【題目】如圖,拋物線y=ax-2x+c(a≠0)x軸,y軸分別交于點ABC三點,已知點(-2,0),C(0,-8),點D是拋物線的頂點.

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應(yīng)點B'落在拋物線的對稱軸上,求點P的坐標(biāo);

【答案】(1)y=x22x8D(1,﹣9)(2)P()

【解析】

1)將點A、點C的坐標(biāo)代入拋物線的解析式可求得a、c的值,從而得到拋物線的解析式,最后利用配方法可求得點D的坐標(biāo);
2)將y=0代入拋物線的解析式求得點B的坐標(biāo),然后由拋物線的對稱軸方程可求得點E的坐標(biāo),由折疊的性質(zhì)可求得∠BEP=45°,設(shè)直線EP的解析式為y=-x+b,將點E的坐標(biāo)代入可求得b的值,從而可求得直線EP的解析式,最后將直線EP的解析式和拋物線的解析式聯(lián)立組成方程組求解即可.

解:(1)將點A、點C的坐標(biāo)代入拋物線的解析式得:,

解得:a=1,c=8

∴拋物線的解析式為y=x22x8

y=(x1)29,

D(1,﹣9)

(2)y=0代入拋物線的解析式得:x22x8=0,解得x=4x=2,

B(4,0)

y=(x1)29,

∴拋物線的對稱軸為x=1,

E(10)

∵將EBP沿直線EP折疊,使點B的對應(yīng)點B'落在拋物線的對稱軸上,

EP為∠BEF的角平分線.

∴∠BEP=45°

設(shè)直線EP的解析式為y=x+b,將點E的坐標(biāo)代入得:﹣1+b=0,解得b=1,

∴直線EP的解析式為y=x+1

y=x+1代入拋物線的解析式得:﹣x+1=x22x8,解得:x=x=

∵點P在第四象限,

x=

y=

P(,)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+bx軸相交于點A,與y軸相交于點B,拋物線yax24ax+4經(jīng)過點A和點B,并與x軸相交于另一點C,對稱軸與x軸相交于點 D

1)求拋物線的表達式;

2)求證:△BOD∽△AOB

3)如果點P在線段AB上,且∠BCP=∠DBO,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜坡上按水平距離間隔50米架設(shè)電纜,塔柱上固定電纜的位置,離塔柱底部的距離均為20米.若以點為原點,以水平地面所在的直線為軸,建立如圖所示的坐標(biāo)系,已知斜坡所在直線的解析式為,兩端掛起的電纜下垂近似成二次項系數(shù)為拋物線的形狀.

1)點的坐標(biāo)為 ,點的坐標(biāo)為 ;

2)求電纜近似成的拋物線的解析式;

3)小明說:在拋物線頂點處,下垂的電纜在豎直方向上與斜坡的距離最近。你是否認同?請計算說明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機器人、陶藝制作四門創(chuàng)客課程,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

1

創(chuàng)客課程

頻數(shù)

頻率

A

36

0.45

B

0.25

C

16

b

D

8

合計

a

1

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

選項

創(chuàng)客課程

A

“3D”打印

B

數(shù)學(xué)編程

C

智能機器人

D

陶藝制作

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a   b   ;

2“D”對應(yīng)扇形的圓心角為   

3)根據(jù)調(diào)查結(jié)果,請你估計該校2000名學(xué)生中最喜歡數(shù)學(xué)編程創(chuàng)客課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、Dx軸的負半軸上,點Cy軸的正半軸上,點FAB上,點B、E在反比例函數(shù)y=(k為常數(shù),k0)的圖象上,正方形ADEF的面積為4,且BF=2AF,則k值為( )

A. 4B. -4C. 6D. -6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知、,By軸上的動點,以AB為邊構(gòu)造,使點Cx軸上,BC的中點,則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過、x軸的垂線,分別交直線C、D兩點拋物線經(jīng)過O、C、D三點.

求拋物線的表達式;

M為直線OD上的一個動點,過Mx軸的垂線交拋物線于點N,問是否存在這樣的點M,使得以A、CM、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標(biāo);若不存在,請說明理由;

沿CD方向平移C在線段CD上,且不與點D重合,在平移的過程中重疊部分的面積記為S,試求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預(yù)計夏季某一段時間內(nèi),甲種水果的銷售利潤y(萬元)與進貨量x(噸)近似滿足函數(shù)關(guān)系y=0.3x;乙種水果的銷售利潤y(萬元)與進貨量x(噸)近似滿足函數(shù)關(guān)系y=ax2+bx(其中a≠0,a,b為常數(shù)),且進貨量x為1噸時,銷售利潤y為1.4萬元;進貨量x為2噸時,銷售利潤y為2.6萬元.

(1)求y(萬元)與x(噸)之間的函數(shù)關(guān)系式.

(2)如果市場準備進甲、乙兩種水果共10噸,設(shè)乙種水果的進貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以BC為直徑的⊙O交的邊ABE,點D在⊙O上,且DEBC,連BD并延長交CAF,∠CBF=∠A

1)求證:CA是⊙O的切線;

2)若⊙O的半徑為2,BD2BE,則DE長為   (直接寫答案).

查看答案和解析>>

同步練習(xí)冊答案