【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.
(1)固定三角板A1B1C,然后將三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖2的位置,AB與A1C、A1B1分別交于點(diǎn)D、E,AC與A1B1交于點(diǎn)F.
①填空:當(dāng)旋轉(zhuǎn)角等于20°時(shí),∠BCB1= 度;
②當(dāng)旋轉(zhuǎn)角等于多少度時(shí),AB與A1B1垂直?請說明理由.
(2)將圖2中的三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使AB∥CB1,AB與A1C交于點(diǎn)D,試說明A1D=CD.
【答案】(1)①160°,②30°;(2)證明見解析.
【解析】分析:(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得再根據(jù)直角三角形兩銳角互余求出,然后根據(jù)進(jìn)行計(jì)算即可得解;
②根據(jù)直角三角形兩銳角互余求出,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出,即為旋轉(zhuǎn)角的度數(shù);
(2)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得根據(jù)旋轉(zhuǎn)的性質(zhì)可得然后求出解即可.
詳解:(1)①由旋轉(zhuǎn)的性質(zhì)得,
∴
∴
②∵AB⊥
∴
∴
∴旋轉(zhuǎn)角為;
(2)∵AB∥CB1,
∴
∵
∴ 又∵由旋轉(zhuǎn)的性質(zhì)得,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則反比例函數(shù) 與一次函數(shù)y=bx+c在同一坐標(biāo)系中的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,A點(diǎn)坐標(biāo)為(10, 0),C點(diǎn)坐標(biāo)為(0, 6),將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處,求線段EA 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a、b、c在數(shù)軸上的位置如圖所示,則:
(1)用“<、>、=”填空:a____0,b____0,c_____0;
(2)用“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;
(3)化簡:|﹣a|﹣|a﹣b|+|c﹣a|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( )
A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 m≥2,n≥2,且 m、n 均為正整數(shù),如果將 mn 進(jìn)行如圖所示的“分解”,那么下列四個(gè)敘述中正確的有( )
①在 25 的“分解”結(jié)果是 15和17兩個(gè)數(shù).
②在 42 的“分解”結(jié)果中最大的數(shù)是9.
③若 m3 的“分解”結(jié)果中最小的數(shù)是 23,則 m=5.
④若 3n 的“分解”結(jié)果中最小的數(shù)是 79,則 n=5.
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC放置在第一象限內(nèi),頂點(diǎn)A在x軸上,若頂點(diǎn)B的坐標(biāo)是(4,3),(1)請求出菱形邊長OA的長度.
(2)反比例函數(shù)經(jīng)過點(diǎn)C,請求出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com