【題目】如圖,菱形OABC放置在第一象限內(nèi),頂點(diǎn)A在x軸上,若頂點(diǎn)B的坐標(biāo)是(4,3),(1)請(qǐng)求出菱形邊長OA的長度.
(2)反比例函數(shù)經(jīng)過點(diǎn)C,請(qǐng)求出的值.
【答案】(1)(2)
【解析】分析:(1)、首先設(shè)OA=x,則AB=OA=x,過點(diǎn)B作BD⊥OA,根據(jù)Rt△ABD的勾股定理得出答案;(2)、過點(diǎn)C作CE⊥OA,根據(jù)菱形的性質(zhì)得出OE和CE的長度,從而得出點(diǎn)C的坐標(biāo),然后根據(jù)反比例函數(shù)的解析式得出k的值.
詳解:(1)、設(shè)OA=x,則AB=OA=x,過點(diǎn)B作BD⊥OA, ∵點(diǎn)B的坐標(biāo)為(4,3),
∴AD=4-x,BD=3, 根據(jù)Rt△ABD的勾股定理可得:,
解得:x=,即OA的長度為;
(2)、∵OA的長度為, ∴AD=, 過點(diǎn)C作CE⊥OA,∴OE=AD=,CE=BD=3,
∴點(diǎn)C的坐標(biāo)為(,3), ∴k=3×.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)—2+(—3)—(+5)+(+7);
(2)(—4)×7×(—1);
(3);
(4).
(5);
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.
(1)固定三角板A1B1C,然后將三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖2的位置,AB與A1C、A1B1分別交于點(diǎn)D、E,AC與A1B1交于點(diǎn)F.
①填空:當(dāng)旋轉(zhuǎn)角等于20°時(shí),∠BCB1= 度;
②當(dāng)旋轉(zhuǎn)角等于多少度時(shí),AB與A1B1垂直?請(qǐng)說明理由.
(2)將圖2中的三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使AB∥CB1,AB與A1C交于點(diǎn)D,試說明A1D=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)(-20)-(+3)-(-5) (2)
(3) |-3|×(-5)÷(-) (4)
(5) (6)()×4
(7) (8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;連結(jié)EC,取EC的中點(diǎn)M,連結(jié)DM和BM.
(1)若點(diǎn)D在邊AC上,點(diǎn)E在邊AB上且與點(diǎn)B不重合,如圖①,
求證:BM=DM且BM⊥DM;
(2)如果將圖①中的△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立?如果不成立,請(qǐng)舉出反例;如果成立,請(qǐng)給予證明.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E是邊AB上一點(diǎn),點(diǎn)P是對(duì)角線BD上一點(diǎn),且PE⊥PC.
⑴ 求證:PC=PE;
⑵ 若BE=2,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:
碟子的個(gè)數(shù) | 碟子的高度(單位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含x的式子表示);
(2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的結(jié)論有
A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c=0;④若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 , 其中正確結(jié)論是:(填上序號(hào)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com