【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0<t<).
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進行探究,并解答下列問題:
①證明:在運動過程中,點O始終在QM所在直線的左側;
②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
【答案】(1);(2);(3)①證明見解析,②t=,PM與⊙O不相切.
【解析】
試題分析:(1)先證△PBQ∽△CBD,求出PQ、BQ,進而可求出t值;(2)先證△QTM∽△BCD,利用線段成比例可求出t值;(3)①QM交CD于E,利用DE、DO差值比較可判斷點O始終在QM所在直線的左側;②由①可知⊙O只有在左側與直線QM相切于點H,QM與CD交于點E.由△OHE∽△BCD,利用線段成比例可求t值,再利用反證法證明直線PM不可能與⊙O相切.
試題解析:解:(1)如圖1中,在矩形ABCD中,∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴,∵PQ⊥BD,∴∠BPQ=90°,∵∠PBQ=∠DBC,∠BPQ=∠C,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,
∴t=.(2)解:如圖2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,∴ TQ=(8﹣5t),QM=3t,
∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴
∴t=(s),∴t=s時,△CMQ是以CQ為底的等腰三角形.(3)①證明:如圖2中,由此QM交CD于E,
∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴點O在直線QM左側.②解:如圖3中,由①可知⊙O只有在左側與直線QM相切于點H,QM與CD交于點E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,
∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴,∴t=.
∴t=s時,⊙O與直線QM相切.連接PM,假設PM與⊙O相切,則∠OMH= PMQ=22.5°,在MH上取一點F,使得MF=FO,則∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8 ,∴MH=0.8(+1),
由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4- - =,
∴0.8(+1)≠,矛盾,∴假設不成立.∴直線MQ與⊙O不相切.
科目:初中數學 來源: 題型:
【題目】某水果店販賣西瓜、梨子及蘋果,已知一個西瓜的價錢比6個梨子多6元,一個蘋果的價錢比2個梨子少2元.判斷下列敘述何者正確( )
A.一個西瓜的價錢是一個蘋果的3倍
B.若一個西瓜降價4元,則其價錢是一個蘋果的3倍
C.若一個西瓜降價8元,則其價錢是一個蘋果的3倍
D.若一個西瓜降價12元,則其價錢是一個蘋果的3倍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉,得到△ADE,旋轉角為α(0°<α<180°),點B的對應點為點D,點C的對應點為點E,連接BD,BE.
(1)如圖,當α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要得到函數y=2(x-1)2+3的圖像,可以將函數y=2x2的圖像( )
A.向左平移1個單位長度,再向上平移3個單位長度
B.向左平移1個單位長度,再向下平移3個單位長度
C.向右平移1個單位長度,再向上平移3個單位長度
D.向右平移1個單位長度,再向下平移3個單位長度
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com