【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分線(xiàn)分別交AB,AC于點(diǎn)D和點(diǎn)E.若CE=2,則AB的長(zhǎng)是_____.
【答案】4
【解析】
根據(jù)垂直平分線(xiàn)的性質(zhì)可得AE=BE,ED⊥AB,AD=BD,由∠C=90°,∠ABC=60°可知∠A=30°,進(jìn)而根據(jù)等腰三角形的性質(zhì)可知∠A=∠EBA=30°,進(jìn)而可得∠EBC=30°,根據(jù)角平分線(xiàn)的性質(zhì)可得DE=CE=2.利用勾股定理可求出AD的長(zhǎng),即可得AB的長(zhǎng).
∵在Rt△ABC中,∠C=90°,∠ABC=60°,
∴∠A=30°,
∵DE是線(xiàn)段AB的垂直平分線(xiàn),
∴AD=BD,EA=EB,ED⊥AB,
∴∠A=∠EBA=30°,
∴∠EBC=∠ABC-∠EBA=30°,
又∵BC⊥AC,ED⊥AB,∠EBA=∠EBC,
∴DE=CE=2.
在直角三角形ADE中,DE=2,∠A=30°,
∴AE=2DE=4,
∴AD==2,
∴AB=2AD=4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊直角三角板放置在銳角上,使得該三角板的兩條直角邊恰好分別經(jīng)過(guò)點(diǎn)
(1)如圖①,若時(shí),點(diǎn)在內(nèi),則 度,____度, 度;
(2)如圖②,改變直角三角板的位置,使點(diǎn)在內(nèi),請(qǐng)?zhí)骄?/span>與之間存在怎樣的數(shù)量關(guān)系,并驗(yàn)證你的結(jié)論;
(3)如圖③,改變直角三角板的位置,使點(diǎn)在外,且在邊的左側(cè),直接寫(xiě)出三者之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑到學(xué)校.如果小明跑步的速度均勻的,到達(dá)小彬家用了8分鐘,整個(gè)跑步過(guò)程用時(shí)共32分鐘.
(1)以小明家為原點(diǎn)、向東為正方向,用1個(gè)單位長(zhǎng)度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家;
(2)用點(diǎn)C表示出學(xué)校的位置;
(3)求小彬家與學(xué)校之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,點(diǎn)D在AC邊上,點(diǎn)E在BC邊上,且∠AED=∠B,若AB=10,BE=5,AE=2 ,則線(xiàn)段CE的長(zhǎng)為( )
A.
B.8
C.2
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=6,AD=10,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)△ABD(點(diǎn)D在小正方形的頂點(diǎn)上),使△ABD的周長(zhǎng)等于△ABC的周長(zhǎng),且以A,B,C,D為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形;
(2)在圖2中畫(huà)△ABE(點(diǎn)E在小正方形的頂點(diǎn)上),使△ABE的周長(zhǎng)等于△ABC的周長(zhǎng),且以A,B,C,E為頂點(diǎn)的四邊形是中心對(duì)稱(chēng)圖形,并直接寫(xiě)出該四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C與∠AED的大小關(guān)系嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A城有某種農(nóng)機(jī)30臺(tái),B城有該農(nóng)機(jī)40臺(tái),現(xiàn)要將這些農(nóng)機(jī)全部運(yùn)往C,D兩鄉(xiāng),調(diào)運(yùn)任務(wù)承包給某運(yùn)輸公司.已知C鄉(xiāng)需要農(nóng)機(jī)34臺(tái),D鄉(xiāng)需要農(nóng)機(jī)36臺(tái),從A城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為250元/臺(tái)和200元/臺(tái),從B城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為150元/臺(tái)和240元/臺(tái).
(1)設(shè)A城運(yùn)往C鄉(xiāng)該農(nóng)機(jī)x臺(tái),運(yùn)送全部農(nóng)機(jī)的總費(fèi)用為W元,求W關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)現(xiàn)該運(yùn)輸公司要求運(yùn)送全部農(nóng)機(jī)的總費(fèi)用不低于16460元,則有多少種不同的調(diào)運(yùn)方案?將這些方案設(shè)計(jì)出來(lái).
(3)現(xiàn)該運(yùn)輸公司決定對(duì)A城運(yùn)往C鄉(xiāng)的農(nóng)機(jī),從運(yùn)輸費(fèi)中每臺(tái)減免a元(a≤200)作為優(yōu)惠,其他費(fèi)用不變,如何調(diào)運(yùn),使總費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為數(shù)軸上兩條線(xiàn)段,其中與原點(diǎn)重合,,且.
(1)當(dāng)為中點(diǎn)時(shí),求線(xiàn)段的長(zhǎng);
(2)線(xiàn)段和以(1)中圖形為初始位置,同時(shí)開(kāi)展向右運(yùn)動(dòng),線(xiàn)段的運(yùn)動(dòng)速度為每秒5個(gè)單位長(zhǎng)度,線(xiàn)段運(yùn)動(dòng)速度為每秒3個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)結(jié)合運(yùn)動(dòng)過(guò)程解決以下問(wèn)題:
①當(dāng)時(shí),求的值;
②當(dāng)時(shí),請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com