【題目】如圖,已知的直徑,的度數(shù)為,點的中點,在直徑上作出點,使的值最小,則的最小值為________

【答案】

【解析】

作B關于CD的對稱點E,則E正好在圓周上連接OA、OB、OE、AE,AE交CD于P,則AP+BP最短,根據(jù) 的度數(shù)為60°,點B是的中點計算出,∠AOB=∠COB=30°,然后再證明△OAE是等腰直角三角形,再利用勾股定理可得答案.

作B關于CD的對稱點E,則E正好在圓周上,
連接OA、OB、OE、AE,AE交CD于P,
則AP+BP最短,
的度數(shù)為60°,點B是的中點,
= ,且的度數(shù)是30°,
∴∠AOB=∠COB=30°,
∵B關于CD的對稱點是E,
∴弧BE的度數(shù)是60°,
∴∠AOE=90°,
∵OA=OE=CD=1,
∴△OAE是等腰直角三角形,
由勾股定理得:AE=
故答案是:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內使用,憑卡游泳,每次游泳再付費30元.

方式二:顧客不購買會員卡,每次游泳付費40元.

設小亮在一年內來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).

1)請分別寫出y1,y2x之間的函數(shù)表達式.

2)若小亮一年內來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?

3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.

在第個圖形中有______個三角形(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直徑,半徑,點上,且點與點在直徑的兩側,連結,.若,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,與過點的切線垂直,垂足為點,直線的延長線相交于點,平分,交于點

求證:平分;

求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,完成(1-3)題

數(shù)學課上,老師出示了這樣一道題:如圖,△ABD和△ACE中,ABAD,ACAE,∠DAB=∠CAEα,連接DC、BE交于點F,過AAGDC于點G,探究線段FG、FE、FC之間的數(shù)量關系,并證明.

同學們經(jīng)過思考后,交流了自已的想法:

小明:通過觀察和度量,發(fā)現(xiàn)線段BE與線段DC相等.

小偉:通過觀察發(fā)現(xiàn),∠AFEα存在某種數(shù)量關系.

老師:通過構造全等三角形,從而可以探究出線段FG、FE、FC之間的數(shù)量關系.

1)求證:BECD;

2)求∠AFE的度數(shù)(用含α的式子表示);

3)探究線段FG、FE、FC之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關系式;

(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC 中,點 D 是線段 BC 上一點.作射線 AD ,點 B 關于射線 AD 的對稱點為 E .連接 EC 并延長,交射線 AD 于點 F .

1)補全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF EF 之間的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案