【題目】如圖所示,圖①是一個(gè)三角形,分別連接三邊中點(diǎn)得圖②,再分別連接圖②中的小三角形三邊中點(diǎn),得圖③……按此方法繼續(xù)下去.
在第個(gè)圖形中有______個(gè)三角形(用含的式子表示)
【答案】
【解析】
分別數(shù)出圖①、圖②、圖③中的三角形的個(gè)數(shù),可以發(fā)現(xiàn):第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去3.如圖③中三角形的個(gè)數(shù)為9=4×3-3.按照這個(gè)規(guī)律即可求出第n各圖形中有多少三角形.
分別數(shù)出圖①、圖②、圖③中的三角形的個(gè)數(shù),
圖①中三角形的個(gè)數(shù)為1=4×1-3;
圖②中三角形的個(gè)數(shù)為5=4×2-3;
圖③中三角形的個(gè)數(shù)為9=4×3-3;
…
可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去3.
按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為4n-3.
故答案為4n-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,點(diǎn)D、E分別為AB、AC上的點(diǎn),且DE∥BC.將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,連接BD、EC.下列結(jié)論:①△ADE的旋轉(zhuǎn)角為120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正確的有( )
A.②③B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作EC⊥OB,交⊙O于點(diǎn)C,作直徑CD,過點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,作AF⊥PC于點(diǎn)F,連接CB.
(1)求證:AC平分∠FAB;
(2)求證:BC2=CECP;
(3)當(dāng)AB=4且=時(shí),求劣弧的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)、分別在直線與上,且,與的角平分線相交于點(diǎn),若以為直徑作,則點(diǎn)與的位置關(guān)系是( )
A. 點(diǎn)P在⊙O外 B. 點(diǎn)P在⊙O內(nèi)
C. 點(diǎn)P在⊙O上 D. 以上都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( )
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的直徑為,的度數(shù)為,點(diǎn)是的中點(diǎn),在直徑上作出點(diǎn),使的值最小,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在∠MON的角平分線上,過點(diǎn)P作OP的垂線交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分別為A、B,EP∥BD,則下列結(jié)論錯(cuò)誤的是( 。
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中BC邊上的垂直平分線DE與∠BAC得平分線交于點(diǎn)E,EF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,EG⊥AC交于點(diǎn)G.
求證:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com