【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于C點(diǎn),AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求⊙O的半徑R的長.
【答案】(1)證明見解析
(2)
【解析】
試題(1)連接OC,由題意得OC⊥CD.又因?yàn)?/span>AC平分∠DAB,則∠1=∠2=∠DAB.即可得出AD∥OC,則AD⊥CD;
(2)連接BC,則∠ACB=90°,可證明△ADC∽△ACB.則,從而求得R.
試題解析:(1)證明:連接OC,
∵直線CD與⊙O相切于C點(diǎn),AB是⊙O的直徑,
∴OC⊥CD.
又∵AC平分∠DAB,
∴∠1=∠2=∠DAB.
又∠COB=2∠1=∠DAB,
∴AD∥OC,
∴AD⊥CD.
(2)連接BC,則∠ACB=90°,
在△ADC和△ACB中
∵∠1=∠2,∠3=∠ACB=90°,
∴△ADC∽△ACB.
∴
∴R=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),若在拋物線上有且只有三個不同的點(diǎn)C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( 。
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去學(xué)校食堂就餐,經(jīng)常會在一個買菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等時間x(分)之間滿足反比例函數(shù)關(guān)系,如下表:
等待時間x | 1 | 2 | 5 | 10 | 20 |
舒適度指數(shù)y | 100 | 50 | 20 | 10 | 5 |
已知學(xué)生等待時間不超過30分鐘
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若等待時間8分鐘時,求舒適度的值;
(3)舒適度指數(shù)不低于10時,同學(xué)才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學(xué)最多等待多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對稱軸于點(diǎn)B,直線CP交x軸于點(diǎn)A.
(1)求該拋物線的表達(dá)式;
(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長;
(3)如果△ABP的面積等于△ABC的面積,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是( 。
A. ①②④ B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,D是上一點(diǎn),AD與BC交于E,AF⊥DB,垂足為F.
(1)求證:∠ADB=∠CDE;
(2)若AF=DC=6,AB=10,求△DBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),B(﹣4,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求△BMC面積的最大值;
(3)在(2)中△BMC面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
① 4ac<b2;② 方程ax2+bx+c=0的兩個根是;③ 3a+c>0;④ 當(dāng)y>0時,x的取值范圍是-1≤x<3;⑤ 當(dāng)x<0時,y隨x增大而增大;
其中結(jié)論正確有__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com