【題目】等腰△ABC內(nèi)接于半徑為5的⊙O,點(diǎn)O到底邊BC的距離為3,則AB的長為___.
【答案】2或4
【解析】
分兩種情況考慮:(1)當(dāng)△ABC為銳角三角形時(shí),如圖1所示,
過A作AD⊥BC,由題意得到AD過圓心O,連接OB,(2)當(dāng)△ABC為鈍角三角形時(shí),如圖2所示,過A作AD⊥BC,由題意得到AD延長線過圓心O,連接OB,進(jìn)行解答.
解:分兩種情況考慮:當(dāng)△ABC為銳角三角形時(shí),如圖1所示,
過A作AD⊥BC,由題意得到AD過圓心O,連接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根據(jù)勾股定理得:BD=4,
在Rt△ABD中,AD=AO+OD=8,BD=4,
根據(jù)勾股定理得:AB==4;
當(dāng)△ABC為鈍角三角形時(shí),如圖2所示,
過A作AD⊥BC,由題意得到AD延長線過圓心O,連接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根據(jù)勾股定理得:BD=4,
在Rt△ABD中,AD=AO﹣OD=2,BD=4,
根據(jù)勾股定理得:AB==2,
綜上,AB=2或4.
故答案為:2或4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于C點(diǎn),AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求⊙O的半徑R的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.
(1)求y1的解析式;
(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過x軸上的同一點(diǎn),求y2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從A,B兩題中任選一題解答,我選擇________.
A.如圖(1)是兩棵樹在同一盞路燈下的影子.
(1)確定該路燈泡所在的位置;
(2)如果此時(shí)小穎所在位置恰好與這兩棵樹所在的位置共線(三點(diǎn)在一條直線上),請(qǐng)畫出圖中表示小穎影子的線段AB.
B.如圖(2),小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他在某一燈光下的影子為DA,繼續(xù)按此速度行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子落在其身后的線段DF上,測(cè)得此時(shí)影長MF為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H.他在同一燈光下的影子恰好是HB.圖中線段CD,EF,GH表示小明的身高.
(1)請(qǐng)?jiān)趫D中畫出小明的影子MF;
(2)若A、B兩地相距12米,則小明原來的速度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AF是⊙O切線,CD是垂直于AB的弦,垂足為E,過點(diǎn)C作DA的平行線與AF相交于點(diǎn)F,CD=,BE=2.
求證:(1)四邊形FADC是菱形;
(2)FC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上的一點(diǎn),AP與BP分別平分∠DAB和∠CBA.
(1)判斷△APB是什么三角形,證明你的結(jié)論;
(2)比較DP與PC的大。
(3)畫出以AB為直徑的⊙O,交AD于點(diǎn)E,連接BE與AP交于點(diǎn)F,若tan∠BPC=,求tan∠AFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)平面xOy中,點(diǎn)A坐標(biāo)為,,,AB與x軸交于點(diǎn)C,那么AC:BC的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包含這兩個(gè)點(diǎn))運(yùn)動(dòng).有如下四個(gè)結(jié)論:①拋物線與x軸的另一個(gè)交點(diǎn)是(3,0);②點(diǎn)C(x1,y1),D(x2,y2)在拋物線上,且滿足x1<x2<1,則y1>y2;③常數(shù)項(xiàng)c的取值范圍是2≤c≤3;④系數(shù)a的取值范圍是﹣1≤a≤﹣.上述結(jié)論中,所有正確結(jié)論的序號(hào)是( 。
A. ①②③ B. ②③④ C. ①④ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com