【題目】某玩具店進(jìn)了一排黑白塑料球,共5箱,每箱的規(guī)格、數(shù)量都相同,其中每箱中裝有黑白兩種顏色的塑料球共3000個(gè),為了估計(jì)每箱中兩種顏色球的個(gè)數(shù),隨機(jī)抽查了一箱,將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子中,多次重復(fù)上述過(guò)程后,發(fā)現(xiàn)摸到黑球的概率在0.8附近波動(dòng),則此可以估計(jì)這批塑料球中黑球的總個(gè)數(shù),請(qǐng)將黑球總個(gè)數(shù)用科學(xué)記數(shù)法表示約為________個(gè).

【答案】1.2×104

【解析】

因?yàn)槊胶谇虻念l率在0.8附近波動(dòng)所以摸出黑球的概率為0.8,再設(shè)出黑球的個(gè)數(shù)根據(jù)概率公式列方程解答即可

設(shè)黑球的個(gè)數(shù)為x

∵黑球的頻率在0.8附近波動(dòng),∴摸出黑球的概率為0.8,0.8,解得x=2400.

所以可以估計(jì)黑球的個(gè)數(shù)為2400×5=12000=1.2×104個(gè)

故答案為:1.2×104

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4.

(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到多少元?

(2)若設(shè)每部手機(jī)降低x,每天的銷售利潤(rùn)為y,試寫出yx之間的函數(shù)關(guān)系式.

(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0

(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;

(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中錯(cuò)誤的有( )

RtABC,已知兩邊長(zhǎng)分別為34,則第三邊的長(zhǎng)為5;

ABC的三邊長(zhǎng)分別為ABBC,AC+=,A=90°;

ABC,A:∠B:∠C=1:5:6,ABC是直角三角形;

若三角形的三邊長(zhǎng)之比為3:4:5,則該三角形是直角三角形

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=B.

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點(diǎn)A(-3,0)和B(2,0),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)如圖1,若點(diǎn)DCB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求點(diǎn)G的坐標(biāo);

(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),Ex軸上一動(dòng)點(diǎn),拋物線y=ax+bx+4對(duì)稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的邊長(zhǎng)分別為,則正方形③的邊長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)OAPB的平分線上,OPA相切于點(diǎn)C

1)求證:直線PBO相切;

2PO的延長(zhǎng)線與O交于點(diǎn)E.若O的半徑為3,PC=4.求弦CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案