【題目】某種商品每天的銷售利潤y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx﹣75.其圖象如圖.
(1)銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤最大?最大利潤為多少元?
(2)銷售單價(jià)在什么范圍時(shí),該種商品每天的銷售利潤不低于16元?
【答案】(1)銷售單價(jià)為10元時(shí),該種商品每天的銷售利潤最大,最大利潤為25元;
(2)銷售單價(jià)不少于7元且不超過13元時(shí),該種商品每天的銷售利潤不低于16元.
【解析】
試題(1)由已知,應(yīng)用待定系數(shù)法,可得二次函數(shù)解析式,根據(jù)二次函數(shù)頂點(diǎn)坐標(biāo)的性質(zhì),可得答案.
(2)根據(jù)函數(shù)值大于或等于16,可得不等式的解集,可得答案.
試題解析:解:(1)y=ax2+bx﹣75圖象過點(diǎn)(5,0)、(7,16),
∴,解得.
∴y與x之間的函數(shù)關(guān)系為.
∵
∴當(dāng)x=10時(shí),y最大=25,
答:銷售單價(jià)為10元時(shí),該種商品每天的銷售利潤最大,最大利潤為25元.
(2)∵函數(shù)圖象的對(duì)稱軸為直線x=10,
∴點(diǎn)(7,16)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)是(13,16).
又∵函數(shù)y=﹣x2+20x﹣75圖象開口向下,
∴當(dāng)7≤x≤13時(shí),y≥16.
答:銷售單價(jià)不少于7元且不超過13元時(shí),該種商品每天的銷售利潤不低于16元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內(nèi)接四邊形,點(diǎn)P在BA的延長線上,PD與⊙O相切,D為切點(diǎn),若∠BCD=125°,則∠ADP的大小為( )
A.25°B.40°C.35°D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x+5經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式;
(2)如圖(2),若過點(diǎn)B的直線交直線AC于點(diǎn)M.
①當(dāng)BM⊥AC時(shí),過拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線BM的平行線交AC于點(diǎn)Q,若以點(diǎn)B,M,Q,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo);
②連結(jié)BC,當(dāng)直線BM與直線AC的夾角等于∠ACB的2倍時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系的原點(diǎn)O是正方形ABCD的中心,頂點(diǎn)A,B的坐標(biāo)分別為(1,1)、(﹣1,1),把正方形ABCD繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到正方形A′B′C′D′,則正方形ABCD與正方形A′B′C′D′重疊部分形成的正八邊形的邊長為( )
A.2﹣B.2﹣2C.4﹣2D.+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(m是常數(shù))
(1)證明:不論m取何值時(shí),該二次函數(shù)圖象總與x軸有兩個(gè)交點(diǎn);
(2)若、是該二次函數(shù)圖象上的兩個(gè)不同點(diǎn),求二次函數(shù)解析式和m的值;
(3)若,在函數(shù)圖象上,且,求的取值范圍(結(jié)果可用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便游客觀賞景點(diǎn),某景區(qū)設(shè)計(jì)建造了如圖所示的高為6米的觀景臺(tái),且坡面的坡度比為1:1.后來為了方便行人推車(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為.
(1)求新坡面的坡角.
(2)原坡面底部的正前方13米(的長)有一座古建筑,為保護(hù)文物,當(dāng)?shù)匚奈锕芾聿块T規(guī)定,坡面底部至少距古建筑7米,請(qǐng)問新的設(shè)計(jì)方案能否通過,試說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是超市的手推車,如圖2是其側(cè)面示意圖,已知前后車輪半徑均為5 cm,兩個(gè)車輪的圓心的連線AB與地面平行,測得支架AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,CD=50cm.
(1)求扶手前端D到地面的距離;
(2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點(diǎn)H到點(diǎn)C的距離為10 cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的寬度.(本題答案均保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)經(jīng)過原點(diǎn),交軸正半軸于點(diǎn).點(diǎn)在上,,圓心的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | … | ||||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:
(1)請(qǐng)把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時(shí),隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個(gè)單位而得到的;
③圖象關(guān)于點(diǎn)______中心對(duì)稱.(填點(diǎn)的坐標(biāo))
(3)函數(shù)與直線交于點(diǎn),,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com