【題目】已知反比例函數的圖像經過點(2,-3).
(1)求這個函數的表達式.
(2)點(-1,6),(3,2)是否在這個函數的圖像上?
(3)這個函數的圖像位于哪些象限?函數值y隨自變量的增大如何變化?
【答案】(1)y=-;(2)(-1,6)在函數圖像上,(3,2)不在函數圖像上;(3)二、四象限,在每個象限內,y隨x的增大而增大.
【解析】
(1)根據待定系數法求得即可;
(2)根據圖象上點的坐標特征,把點(﹣1,6),(3,2)代入解析式即可判斷;
(3)根據反比例函數的性質即可得到結論.
(1)設反比例函數的解析式為y(k≠0).
∵反比例函數的圖象經過點(2,﹣3),
∴k=2×(﹣3)=﹣6,
∴反比例函數的表達式y;
(2)把x=﹣1代入y得:y=6,
把x=3代入y得:y=﹣2≠2,
∴點(﹣1,6)在函數圖象上,點(3,2)不在函數圖象上.
(3)∵k=﹣6<0,
∴雙曲線在二、四象限,在每個象限內y隨x的增大而增大.
科目:初中數學 來源: 題型:
【題目】我們給出如下定義:有一組相鄰內角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數的解析式;
(2)寫出不等式ax2+bx+c≥0的解集;
(3)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(4)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價不得低于40元,但物價部門要求每件售價不得高于60元.據市場調查,銷售單價是50元時,每天的銷售量是100件,而銷售單價每漲1元,每天就少售出2件,設單價上漲元.
(1)求當為多少時每天的利潤是1350元?
(2)設每天的銷售利潤為,求銷售單價為多少元時,每天利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點B,AC邊上一點O,⊙O經過點B、C,與AC交于點D,與CE交于點F,連結BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx﹣1的圖象經過點P,且y的值隨x值的增大而增大,則點P的坐標可以為( 。
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若ED=6,AE=10,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子里有1個紅球和n個白球,它們除顏色外其余都相同.
(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復該實驗,經過大量實驗后,發(fā)現摸到白球的頻率穩(wěn)定于左右,求n的值;
(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com