【題目】已知關于x、y的方程組,給出下列結論:
①是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);
③當a=1時,方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4對.
其中正確的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】
①將x=5,y=-1代入檢驗即可做出判斷;
②將x和y分別用a表示出來,然后求出x+y=3來判斷;
③將a=1代入方程組求出方程組的解,代入方程中檢驗即可;
④有x+y=3得到x、y都為自然數(shù)的解有4對.
①將x=5,y=-1代入方程組得:,
由①得a=2,由②得a=,故①不正確.
②解方程
①-②得:8y=4-4a
解得:y=
將y的值代入①得:x=.
所以x+y=3,故無論a取何值,x、y的值都不可能互為相反數(shù),故②正確.
③將a=1代入方程組得:,
解此方程得:,
將x=3,y=0代入方程x+y=3,方程左邊=3=右邊,是方程的解,故③正確.
④因為x+y=3,所以x、y都為自然數(shù)的解有,,,.故④正確.
則正確的選項有②③④.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC的底邊BC=13cm,D是腰AB上一點,且CD=12cm, BD=5cm.
(1)求證:△BDC是直角三角形;
(2)求△ABC的周長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ACDF中,AC=DF,點B在CD上,點E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示長方形ACDF的面積S
方法一:S=
方法二:S=
(2)求a,b,c之間的等量關系(需要化簡)
(3)請直接運用(2)中的結論,求當c=5,a=3,S的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊長為4,對角線相交于點P,頂點A,C分別在x軸,y軸的正半軸上,拋物線L經(jīng)過O,P,A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)點P的坐標為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項式及叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻検故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負數(shù)有關的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當為何值時,多項式有最小值,并求出這個最小值.
(3)當為何值時.多項式有最小值并求出這個最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感恩是中華民族的傳統(tǒng)美德,在4月份某校提出了“感恩父母、感恩老師、感恩他人”的“三感”教育活動.感恩事例有:A.給父母過一次生日;B .為父母做一次家務活,讓父母休息一天;C.給老師一個發(fā)自內(nèi)心的擁抱,并且與老師談心;D.幫助有困難的同學度過難關.為了解學生對這四種感恩事例的情況,在全校范圍內(nèi)隨機抽取若干名學生,進行問卷調查(每個被調查的同學在4種感恩事例中選擇最想做的一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調查中,一共查了名學生;
(2)請補全扇形統(tǒng)計圖中的數(shù)據(jù)及條形統(tǒng)計圖;
(3)若有3名選 A的學生,1名選 C的學生組成志愿服務隊外出參加聯(lián)誼活動,欲從中隨機選出2人擔任活動負責人,請通過樹狀圖或列表求兩人均是選 A的學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你用學習“一次函數(shù)”時積累的經(jīng)驗和方法研究函數(shù)的圖象和性質,并解決問題.
完成下列步驟,畫出函數(shù)的圖象;
列表、填空;
x | 0 | 1 | 2 | 3 | |||||
y | 3 | ______ | 1 | ______ | 1 | 2 | 3 |
描點:
連線
觀察圖象,當x______時,y隨x的增大而增大;
結合圖象,不等式的解集為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,邊AD與邊BC交于點P(不與點B、C重合),點B、E在AD異側,OA、OC分別是∠PAC和∠PCA的角平分線.
(1)當∠APC =60°時,求∠AOC的度數(shù);
(2)當AB⊥AC,AB=AD=4,AC=3,BC=5時,設AP=x,用含x的式子表示PD,并求PD的最大值;
(3)當AB⊥AC,∠B=20°時,∠AOC的取值范圍為α°<∠AOC <β°,直接寫出α、β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com