【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)PAB邊上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的長(zhǎng)度最小值為_____

【答案】44

【解析】

根據(jù)正方形的性質(zhì)得到∠ABC90°,推出∠BEC90°,得到點(diǎn)E在以BC為直徑的半圓上移動(dòng),如圖,設(shè)BC的中點(diǎn)為O,作正方形ABCD關(guān)于直線AB對(duì)稱的正方形AFGB,則點(diǎn)D的對(duì)應(yīng)點(diǎn)是F,連接FOABP,交OE,則線段EF的長(zhǎng)即為PD+PE的長(zhǎng)度最小值,根據(jù)勾股定理即可得到結(jié)論.

解:∵四邊形ABCD是正方形,

∴∠ABC90°,

∴∠ABE+CBE90°,

∵∠ABE=∠BCE,

∴∠BCE+CBE90°,

∴∠BEC90°,

∴點(diǎn)E在以BC為直徑的半圓上移動(dòng),

如圖,設(shè)BC的中點(diǎn)為O,作正方形ABCD關(guān)于直線AB對(duì)稱的正方形AFGB,則點(diǎn)D的對(duì)應(yīng)點(diǎn)是F,

連接FOABP,交半圓OE,則線段EF的長(zhǎng)即為PD+PE的長(zhǎng)度最小值,OE4

∵∠G90°,FGBGAB8

OG12,

OF4,

EF44,

PD+PE的長(zhǎng)度最小值為44

故答案為:44

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,過點(diǎn)作直線,將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是),射線分別交直線于點(diǎn)

1)問題發(fā)現(xiàn):如圖1所示,若重合,則的度數(shù)為_________________

2)類比探究:如圖2,所示,設(shè)的交點(diǎn)為M,當(dāng)M中點(diǎn)時(shí),求線段的長(zhǎng);

3)拓展延伸:在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)分別在的延長(zhǎng)線上時(shí),試探究四邊形的面積是否存在最小值,若存在,直接寫出四邊形的最小面積;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCDAC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)AD于點(diǎn)F,已知△AEF的面積=1,則平行四邊形ABCD的面積是( 。

A.24B.18C.12D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某街道需要鋪設(shè)管線的總長(zhǎng)為9000,計(jì)劃由甲隊(duì)施工,每天完成150.工作一段時(shí)間后,因?yàn)樘鞖庠,想?/span>40天完工,所以增加了乙隊(duì).如圖表示剩余管線的長(zhǎng)度與甲隊(duì)工作時(shí)間(天)之間的函數(shù)關(guān)系圖象.

1)直接寫出點(diǎn)的坐標(biāo);

2)求線段所對(duì)應(yīng)的函數(shù)解析式,并寫出自變量的取值范圍;

3)直接寫出乙隊(duì)工作25天后剩余管線的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到一批防護(hù)服生產(chǎn)任務(wù),按要求15天完成,已知這批防護(hù)服的出廠價(jià)為每件80元,為按時(shí)完成任務(wù),該企業(yè)動(dòng)員放假回家的工人及時(shí)返回加班趕制.該企業(yè)第天生產(chǎn)的防護(hù)服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.

1)直接寫出的函數(shù)關(guān)系式________;

2)由于疫情加重,原材料緊缺,防護(hù)服的成本前5天為每件50元,從第6天起每件防護(hù)服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤(rùn)為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別為A(-3,0)、B(1,0),與y軸交于點(diǎn)D(0,3),過頂點(diǎn)C作CH⊥x軸于點(diǎn)H.

(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);

(2)連結(jié)AD、CD,若點(diǎn)E為拋物線上一動(dòng)點(diǎn)(點(diǎn)E與頂點(diǎn)C不重合),當(dāng)△ADE與△ACD面積相等時(shí),求點(diǎn)E的坐標(biāo);

(3)若點(diǎn)P為拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),過點(diǎn)P向CD所在的直線作垂線,垂足為點(diǎn)Q,以P、C、Q為頂點(diǎn)的三角形與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣1,4),點(diǎn)B的坐標(biāo)為(4,n).

1)求這兩個(gè)函數(shù)的表達(dá)式;

2)根據(jù)圖象,直接寫出滿足k1x+bx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長(zhǎng)為的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).四邊形的頂點(diǎn)在格點(diǎn)上,點(diǎn)是邊邊上的一點(diǎn).請(qǐng)選擇適當(dāng)?shù)母顸c(diǎn),用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.

1)①過邊于;

②過點(diǎn);

③在上作線段

2)在(1)的條件下,連,若邊上的動(dòng)點(diǎn),在網(wǎng)格中求作一條線段等于的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在33的正方形網(wǎng)格中,點(diǎn)A、B、C、D、E、F都是格點(diǎn).

1)從AD、E、F四點(diǎn)中任意取一點(diǎn),以所取點(diǎn)及B、C為頂點(diǎn)畫三角形,那么所畫三角形是等腰三角形的概率是   

2)從A、DE、F四點(diǎn)中任意取兩點(diǎn),以所取兩點(diǎn)及B、C為頂點(diǎn)畫四邊形,求所畫四邊形是平行四邊形的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方式寫出分析過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案