【題目】一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2-4ax+c的圖象交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個二次函數(shù)圖象的對稱軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.

①若點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;

②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.

【答案】(1)點(diǎn)C(2, );(2yx2x; y=-x22x

【解析】試題分析:(1)求得二次函數(shù)yax24axc對稱軸為直線x2,把x2代入yx求得y=,即可得點(diǎn)C的坐標(biāo);(2根據(jù)點(diǎn)D與點(diǎn)C關(guān)于x軸對稱即可得點(diǎn)D的坐標(biāo),并且求得CD的長,設(shè)Amm) ,根據(jù)SACD3即可求得m的值,即求得點(diǎn)A的坐標(biāo),把A.D的坐標(biāo)代入yax24axc得方程組,解得a、c的值即可得二次函數(shù)的表達(dá)式.設(shè)Am, m)(m<2),過點(diǎn)AAECDE,則AE2m,CEm

根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點(diǎn)的坐標(biāo),分兩種情況:第一種情況,若a0,則點(diǎn)D在點(diǎn)C下方,求點(diǎn)D的坐標(biāo);第二種情況,若a0,則點(diǎn)D在點(diǎn)C上方,求點(diǎn)D的坐標(biāo),分別把A、D的坐標(biāo)代入yax24axc即可求得函數(shù)表達(dá)式.

試題解析:(1yax24axcax224ac二次函數(shù)圖像的對稱軸為直線x2

當(dāng)x2時,yx,C2).

2①∵點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,D2,- ),CD3.

設(shè)Amm) (m<2),由SACD3,得×3×2m)=3,解得m0A0,0.

A00)、 D2,- )得解得a,c0.

yx2x.

設(shè)Amm)(m<2),過點(diǎn)AAECDE,則AE2m,CEm,

AC2m),

CDAC,CD2m.

SACD10×2m210,解得m=-2m6(舍去),m=-2

A(-2,- ),CD5.

a0,則點(diǎn)D在點(diǎn)C下方,D2,- ),

A(-2,- )、D2,- )得解得

yx2x3.

a0,則點(diǎn)D在點(diǎn)C上方,D2, ),

A(-2,- )、D2, )得解得

y=-x22x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角,點(diǎn)是邊上的一點(diǎn),以為邊作,使,

1)過點(diǎn)于點(diǎn),連接(如圖①)

請直接寫出的數(shù)量關(guān)系;

試判斷四邊形的形狀,并證明;

2)若,過點(diǎn)于點(diǎn),連接(如圖),那么(1中的結(jié)論是否任然成立?若成立,請給出證明,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)O,AOB=120°,CEBD,DEAC,若AD=4,則四邊形CODE的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)F,點(diǎn)點(diǎn)FDEBC,交AB于點(diǎn)D,交AC于點(diǎn)E。若BD=3DE=5,則線段EC的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和2;乙袋中有三個完全相同的小球,分別標(biāo)有數(shù)字1、0和2.小麗先從甲袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)P的坐標(biāo)為(x,y).

(1)請用表格或樹狀圖列出點(diǎn)P所有可能的坐標(biāo);

(2)求點(diǎn)P在一次函數(shù)y=x+1圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A、C分別在x、y軸的正半軸上:OA3,OC4,DOC邊的中點(diǎn),EOA邊上的一個動點(diǎn),當(dāng)BDE的周長最小時,E點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,ADCD于點(diǎn)D.EAB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OCAC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

同步練習(xí)冊答案