精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知BD是矩形ABCD的對角線.

(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結BE,DF,問四邊形BEDF是什么四邊形?請說明理由.

【答案】
(1)

解:如圖所示,EF為所求直線.


(2)

解:四邊形BEDF為菱形,理由為:

證明:∵EF垂直平分BD,

∴BE=DE,∠DEF=∠BEF,

∵AD∥BC,

∴∠DEF=∠BFE,

∴∠BEF=∠BFE,

∴BE=BF,

∵BF=DF,

∴BE=ED=DF=BF,

∴四邊形BEDF為菱形.


【解析】(1)分別以B、D為圓心,比BD的一半長為半徑畫弧,交于兩點,確定出垂直平分線即可;(2)連接BE,DF,四邊形BEDF為菱形,理由為:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD與BC平行,得到一對內錯角相等,等量代換及等角對等邊得到BE=BF,再由BF=DF,等量代換得到四條邊相等,即可得證.此題考查了矩形的性質,菱形的判定,以及作圖﹣基本作圖,熟練掌握性質及判定是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在一個不透明的盒子里裝有三個分別寫有數字6,﹣2,7的小球,它們的形狀、大小、質地完全相同,先從盒子里隨機抽取一個小球,記下數字后放回盒子,搖勻后再隨機取出一個小球,記下數字,請你用畫樹狀圖或列表的方法求兩次取出小球上的數字和大于10的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,點F為BC邊上一點,連接AF交DE于點G,則下列結論中一定正確的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】威麗商場銷售A,B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件.如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數量關系.
猜想結論:(要求用文字語言敘述)垂美四邊形兩組對邊的平方和相等
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航行,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由.(參考數據: ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD,點E,F分別在AD,CD上,BG⊥EF,點G為垂足,AB=5,AE=1,CF=2,則BG=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中裝有僅顏色不同的2個紅球和2個白球,兩個人依次從袋子中隨機摸出一個小球不放回,則第一個人摸到紅球且第二個人摸到白球的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案