【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語(yǔ)言敘述)垂美四邊形兩組對(duì)邊的平方和相等
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).

【答案】
(1)

解:四邊形ABCD是垂美四邊形.

證明:∵AB=AD,

∴點(diǎn)A在線段BD的垂直平分線上,

∵CB=CD,

∴點(diǎn)C在線段BD的垂直平分線上,

∴直線AC是線段BD的垂直平分線,

∴AC⊥BD,即四邊形ABCD是垂美四邊形


(2)

解:猜想結(jié)論:垂美四邊形的兩組對(duì)邊的平方和相等.

如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,

求證:AD2+BC2=AB2+CD2

證明:∵AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,

AB2+CD2=AE2+BE2+CE2+DE2

∴AD2+BC2=AB2+CD2


(3)

解:連接CG、BE,

∵∠CAG=∠BAE=90°,

∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,

在△GAB和△CAE中,

∴△GAB≌△CAE,

∴∠ABG=∠AEC,又∠AEC+∠AME=90°,

∴∠ABG+∠AME=90°,即CE⊥BG,

∴四邊形CGEB是垂美四邊形,

由(2)得,CG2+BE2=CB2+GE2

∵AC=4,AB=5,

∴BC=3,CG=4 ,BE=5 ,

∴GE2=CG2+BE2﹣CB2=73,

∴GE=


【解析】(1)根據(jù)垂直平分線的判定定理證明即可;(2)根據(jù)垂直的定義和勾股定理解答即可;(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計(jì)算.本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì)、垂直的定義、勾股定理的應(yīng)用,正確理解垂美四邊形的定義、靈活運(yùn)用勾股定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點(diǎn)D作△BCD的BC邊上的高DE, 易證△ABC≌△BDE,從而得到△BCD的面積為
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡(jiǎn)單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).

(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)經(jīng)濟(jì)的發(fā)展和城市周邊交通狀況的改善,旅游已成為人們的一種生活時(shí)尚,洪祥中學(xué)開展以“我最喜歡的風(fēng)景區(qū)”為主題的調(diào)查活動(dòng),圍繞“在松峰山、太陽(yáng)島、二龍山和鳳凰山四個(gè)風(fēng)景區(qū)中,你最喜歡哪一個(gè)?(必選且只選一個(gè))”的問題,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若洪祥中學(xué)共有1350名學(xué)生,請(qǐng)你估計(jì)最喜歡太陽(yáng)島風(fēng)景區(qū)的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD是矩形ABCD的對(duì)角線.

(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結(jié)BE,DF,問四邊形BEDF是什么四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=4,BC=10,E是AD邊的中點(diǎn),把矩形紙片沿過點(diǎn)E的直線折疊,使點(diǎn)A落在BC邊上,則折痕EF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過點(diǎn)B作AC的垂線交⊙O于點(diǎn)D,連接CD,設(shè)AO的延長(zhǎng)線交BD于點(diǎn)E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點(diǎn)F,G分別在CD,BD的延長(zhǎng)線上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=8,AB=6,點(diǎn)E為射線DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,使點(diǎn)D落在點(diǎn)F處,若△CEF為直角三角形時(shí),DE的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案