【題目】觀察下列圖形:

1)可知tanαtanβ,用畫圖法tanα+β)的值,具體解法如下:

第一步:如圖1所示,構(gòu)造符合題意兩個(gè)背靠背的直角三角形;

第二步:如圖2所示,將圖1中所有數(shù)據(jù)同比例擴(kuò)大3倍;

第三步:如圖3所示,依托中間的RtABD的各頂點(diǎn)構(gòu)造水平﹣﹣豎直輔助線,構(gòu)造出一線三直角基本相似型,并補(bǔ)成矩形ACEF;由圖可知tanα+β)=   

2)依據(jù)(1)的方法,已知tanα,tanβ,用畫圖法tanα+β)的值.

3)擴(kuò)展延伸,已知tanαtanβ,直接寫出tanαβ)=   

【答案】11;(2)見解析,;(3

【解析】

1)按照提示的方法畫矩形ACEF,AB⊥BD,由△ABC∽△BDE,可得出DE1BE2,CE5DF5,得tanα+β)=1

2)如圖4,四邊形ABCD是矩形,點(diǎn)E、F分別在CDAD邊上,tanα,tanβ,根據(jù)勾股定理和相似三角形性質(zhì)易求得tanα+β)=

3)如圖5,矩形ABCD中,ABCD17,ADBC52CE13,DE4,DF1,∠AFBα∠CBF,∠CBEβ,∠EBFαβ,根據(jù)勾股定理和相似三角形性質(zhì)易求得:tanαβ)=

解:(1)如圖3,

四邊形ACEF是矩形,

∴∠C∠E∠F90°,AC∥EFEFAC,AFCE,∠CAB+∠ABC90°,

∵∠ABD90°

∴∠DBE+∠ABC90°,

∴∠CAB∠DBE

∴△ABC∽△BDE,

,設(shè)DEm,BE2m,

∵DE2+BE2BD2,即:m2+2m2,解得m11,m2=﹣1(舍去),

∴DE1BE2,CEBC+BE3+25DFEFDE615,

∵AC//EF

∴∠ADF∠CADα+β,

∴tanα+β)=tan∠ADF1,

故答案為:1

2)如圖4,

四邊形ABCD是矩形,點(diǎn)E、F分別在CD、AD邊上,令CE2,BC6

∵∠ACE90°,

由勾股定理得:BE2,

設(shè)∠CBEα,∠EBFβ,EF,∠BEF90°

∴tanα,tanβ,

∵∠BEC+∠CBE90°,∠BEC+∠DEF90°,

∴∠DEF∠CBEα,

∴tan∠DEFtanα

設(shè)DFn,DE3n,則n2+(3n)2,

解得:(舍去),

∴DF,DE

∴ABCDCE+DE2+,AFADDF6,

∵AD//BC

∴∠AFB∠CBFα+β,

∴tanα+β)=tan∠AFB

3)如圖5,

矩形ABCD中,令ABCD17,ADBC52CE13,DE4,DF1,

∠AFBα∠CBF,∠CBEβ∠EBFαβ,

tanα,tanβBE13,EF,

∵tan∠DEFtanβ

∴∠DEFβ∠CBE,

∵∠CBE+∠BEC90°,

∴∠DEF+∠BEC90°

∴∠BEF90°,

∴tanαβ)=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解八年級(jí)學(xué)生課外閱讀情況,隨機(jī)抽取20名學(xué)生平均每周用于課外閱讀讀的時(shí)間(單位:),過程如下:

(收集數(shù)據(jù))

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

(整理數(shù)據(jù))

課外閱讀時(shí)間

等級(jí)

人數(shù)

3

8

(分析數(shù)據(jù))

平均數(shù)

中位數(shù)

眾數(shù)

80

請(qǐng)根據(jù)以上提供的信息,解答下列問題:

(1)填空:______,______,______,______;

(2)如果每周用于課外讀的時(shí)間不少于為達(dá)標(biāo),該校八年級(jí)現(xiàn)有學(xué)生200人,估計(jì)八年級(jí)達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABC=ACB,以AC為直徑的O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且CAB=2BCP.

(1)求證:直線CP是O的切線.

(2)若BC=2,sinBCP=,求點(diǎn)B到AC的距離.

(3)在第(2)的條件下,求ACP的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,DEF分別為△ABCACABBC上的點(diǎn),∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是(

A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩運(yùn)動(dòng)員在長(zhǎng)為100m的直道ABA,B為直道兩端點(diǎn))上進(jìn)行勻速往返跑訓(xùn)練,兩人同時(shí)從A點(diǎn)起跑,到達(dá)B點(diǎn)后,立即轉(zhuǎn)身跑向A點(diǎn),到達(dá)A點(diǎn)后,又立即轉(zhuǎn)身跑向B點(diǎn),若甲跑步的速度為5m/s,乙跑步的速度為4m/s,則起跑后2分鐘內(nèi),兩人相遇的次數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一筆直的公路連接、兩地,甲車從地駛往地,速度為每小時(shí)60千米,同時(shí)乙車從地駛往地,速度為每小時(shí)80千米.途中甲車發(fā)生故障,于是停車修理了25小時(shí),修好后立即開車駛往地.設(shè)甲車行駛的時(shí)間為,兩車之間的距離為.已知的函數(shù)關(guān)系的部分圖像如圖所示.

1)直接寫出點(diǎn)的實(shí)際意義.

2)問:甲車出發(fā)幾小時(shí)后發(fā)生故障?

3)將的函數(shù)圖象補(bǔ)充完整.(請(qǐng)對(duì)畫出的圖象用數(shù)據(jù)作適當(dāng)?shù)臉?biāo)注)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校教學(xué)樓對(duì)面是一幢實(shí)驗(yàn)樓,小朱在教學(xué)樓的窗口C測(cè)得實(shí)驗(yàn)樓頂部D的仰角為20°,實(shí)驗(yàn)樓底部B的俯角為30°,量得教學(xué)樓與實(shí)驗(yàn)樓之間的距離AB30m.求實(shí)驗(yàn)樓的高BD.(結(jié)果精確到1m.參考數(shù)據(jù)tan20°≈0.36sin20°≈0.34,cos20°≈0.94

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(﹣2,0),B0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線yk0)過點(diǎn)D,連接BD,若四邊形OADB的面積為6,則k的值是(

A.9B.12C.16D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案