【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為,以小明的手所在位置為原點(diǎn),建立平面直角坐標(biāo)系.

1)當(dāng)身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)處時(shí),繩子剛好通過小紅的頭頂,求繩子所對(duì)應(yīng)的拋物線的表達(dá)式;

2)若身高為的小麗也站在繩子的正下方.

①當(dāng)小麗在距小亮拿繩子手的左側(cè)處時(shí),繩子能碰到小麗的頭嗎?請(qǐng)說明理由;

③設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù):3.16

【答案】1;(2)①繩子能碰到小麗的頭,見解析;②

【解析】

1)因?yàn)閽佄锞過原點(diǎn),可設(shè)拋物線的解析式為:y=ax2+bxa≠0),把小亮拿繩子的手的坐標(biāo)(4,0),以及小紅頭頂坐標(biāo)(1,1.5-1)代入,得到三元一次方程組,解方程組便可;
2)①由自變量的值求出函數(shù)值,再比較便可;
②由y=0.65時(shí)求出其自變量的值,便可確定d的取值范圍.

1)設(shè)拋物線的解析式為:,

,

∴拋物線經(jīng)過點(diǎn),

,

解得,,

∴繩子對(duì)應(yīng)的拋物線的解析式為:

2)①繩子能碰到小麗的頭.理由如下:

∵小麗在距小亮拿繩子手的左側(cè)處,

∴小麗距原點(diǎn),

∴當(dāng)時(shí),,

,

∴繩子能碰到小麗的頭;

②∵

∴當(dāng)時(shí),

,

解得,

3.16,

,,

,,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過定點(diǎn)A

1)直接寫出A點(diǎn)坐標(biāo);

2)直線y=t (t<6)與拋物線交于B,C兩點(diǎn)(BC 的左邊),過點(diǎn)AADBC于點(diǎn)D,是否存在t的值,使得對(duì)于任意的m,∠DAC=ABD恒成立,若存在,請(qǐng)求t的值;若不存在,請(qǐng)說明理由.

3)如圖,當(dāng)m=1時(shí),直線y=2x交對(duì)稱軸于點(diǎn)E,在直線OE的右側(cè)作∠EOP交拋物線于點(diǎn)P,使得tanEOP=,已知x軸上有一個(gè)點(diǎn)M(t,0), EM+PM是否存在最小值?若存在,求t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;

(3)如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程對(duì)承接了60萬平方米的綠化工程,由于情況有變,……,設(shè)原計(jì)劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是( )

A.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果提前30天完成了這一任務(wù)

B.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果延誤30天完成了這一任務(wù)

C.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了20%,結(jié)果延誤30天完成了這一任務(wù)

D.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了20%,結(jié)果提前30天完成了這一任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示支付方式有:微信、支付寶、現(xiàn)金、其他.該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次一共調(diào)查了 名購(gòu)買者?

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,種支付方式所對(duì)應(yīng)的圓心角為 度;

3)若該超市這一周內(nèi)有2000名購(gòu)買者,請(qǐng)你估計(jì)使用兩種支付方式的購(gòu)買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線y=xBC邊相交于D

1)求點(diǎn)D的坐標(biāo):

2)若拋物線y=axbx經(jīng)過DA兩點(diǎn),試確定此拋物線的表達(dá)式:

3Px軸上方(2)題中的拋物線上一點(diǎn),求△POA面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案