【題目】如圖,已知直線y=k1x+b與x軸,y軸相交于P,Q兩點,則y= 的圖象相交于A(﹣2,m),B(1,n)兩點,連接OA,OB,給出下列結(jié)論:①k1k2<0;②m+ n=0;③SAOP=SBOQ;④不等式k1x+b> 的解集在x<﹣2或0<x<1,其中正確的結(jié)論是(
A.②③④
B.①②③④
C.③④
D.②③

【答案】A
【解析】解:由圖象知,k1<0,k2<0, ∴k1k2>0,故①錯誤;
把A(﹣2,m)、B(1,n)代入y= 中得﹣2m=n,
∴m+ n=0,故②正確;
把A(﹣2,m)、B(1,n)代入y=k1x+b得 ,
,
∵﹣2m=n,
∴y=﹣mx﹣m,
∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,
∴P(﹣1,0),Q(0,﹣m),
∴OP=1,OQ=m,
∴SAOP= m,SBOQ= m,
∴SAOP=SBOQ;故③正確;
由圖象知不等式k1x+b> 的解集是x<﹣2或0<x<1,故④正確;
故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標(biāo);
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上A、B、C三點對應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點PA出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運動,點Q從點C出發(fā)在射線CA上向點A勻速運動,且P、Q兩點同時出發(fā).

(1)a、b的值

(2)當(dāng)P運動到線段OB的中點時,點Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度

(3)當(dāng)P、Q兩點間的距離是6個單位長度時,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點中點,如果點在線段上以每秒2cm的速度由點向點運動,同時,點在線段上由點向點運動.設(shè)點運動時間為秒,若某一時刻BPECQP全等,求此時的值及點的運動速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD為BC邊上的高.動點P從點A出發(fā),沿A→D方向以 cm/s的速度向點D運動.設(shè)△ABP的面積為S1 , 矩形PDFE的面積為S2 , 運動時間為t秒(0<t<8),則t=秒時,S1=2S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.. 計算題:

(1)8﹣(﹣10)﹣|﹣2|

(2)2 ﹣3+(﹣3)﹣(+5

(3)﹣24×(﹣ +

(4)﹣49 ×10(簡便運算)

(5)﹣ ÷(+

(6)3×(﹣38 )﹣4×(﹣38 )﹣38

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD,點P為定點,E、F分別是AB、CD上的動點.

(1)求證:∠P=∠BEP+∠PFD;

(2)若點MCD上一點,如圖2,∠FMN=∠BEP,且MNPFN.試說明∠EPF與∠PNM的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)移動E、F使得∠EPF=90°,如圖3,作∠PEG=∠BEP,求∠AEG與∠PFD度數(shù)的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=CB,BE=BF,點A,B,C在同一條直線上,∠1=∠2.

(1)證明:△ABE≌△CBF;

(2)若∠FBE=40°,∠C=45°,求∠E的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案