【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

【答案】
(1)

解:令x=0代入y=﹣3x+3,

∴y=3,

∴B(0,3),

把B(0,3)代入y=ax2﹣2ax+a+4,

∴3=a+4,

∴a=﹣1,

∴二次函數(shù)解析式為:y=﹣x2+2x+3


(2)

解:令y=0代入y=﹣x2+2x+3,

∴0=﹣x2+2x+3,

∴x=﹣1或3,

∴拋物線與x軸的交點(diǎn)橫坐標(biāo)為﹣1和3,

∵M(jìn)在拋物線上,且在第一象限內(nèi),

∴0<m<3,

過點(diǎn)M作ME⊥y軸于點(diǎn)E,交AB于點(diǎn)D,

由題意知:M的坐標(biāo)為(m,﹣m2+2m+3),

∴D的縱坐標(biāo)為:﹣m2+2m+3,

∴把y=﹣m2+2m+3代入y=﹣3x+3,

∴x= ,

∴D的坐標(biāo)為( ,﹣m2+2m+3),

∴DM=m﹣ =

∴S= DMBE+ DMOE

= DM(BE+OE)

= DMOB

= × ×3

=

= (m﹣ 2+

∵0<m<3,

∴當(dāng)m= 時(shí),

S有最大值,最大值為 ;


(3)

解:①由(2)可知:M′的坐標(biāo)為( , );

過點(diǎn)M′作直線l1∥l′,過點(diǎn)B作BF⊥l1于點(diǎn)F,

根據(jù)題意知:d1+d2=BF,

此時(shí)只要求出BF的最大值即可,

∵∠BFM′=90°,

∴點(diǎn)F在以BM′為直徑的圓上,

設(shè)直線AM′與該圓相交于點(diǎn)H,

∵點(diǎn)C在線段BM′上,

∴F在優(yōu)弧 上,

∴當(dāng)F與M′重合時(shí),

BF可取得最大值,

此時(shí)BM′⊥l1,

∵A(1,0),B(0,3),M′( , ),

∴由勾股定理可求得:AB= ,M′B= ,M′A= ,

過點(diǎn)M′作M′G⊥AB于點(diǎn)G,

設(shè)BG=x,

∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,

﹣( ﹣x)2= ﹣x2,

∴x=

cos∠M′BG= = ,

∵l1∥l′,

∴∠BCA=90°,

∠BAC=45°


【解析】(1)利用直線l的解析式求出B點(diǎn)坐標(biāo),再把B點(diǎn)坐標(biāo)代入二次函數(shù)解析式即可求出a的值;(2)過點(diǎn)M作ME⊥y軸于點(diǎn)E,交AB于點(diǎn)D,所以△ABM的面積為 DMOB,設(shè)M的坐標(biāo)為(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S與m的函數(shù)關(guān)系式,即可求出S的最大值,其中m的取值范圍是0<m<3;(3)①由(2)可知m= ,代入二次函數(shù)解析式即可求出縱坐標(biāo)的值;
②過點(diǎn)M′作直線l1∥l′,過點(diǎn)B作BF⊥l1于點(diǎn)F,所以d1+d2=BF,所以求出BF的最小值即可,由題意可知,點(diǎn)F在以BM′為直徑的圓上,所以當(dāng)點(diǎn)F與M′重合時(shí),BF可取得最大值.本題考查二次函數(shù)的綜合問題,涉及待定系數(shù)求二次函數(shù)解析式,求三角形面積,圓的相關(guān)性質(zhì)等知識(shí),內(nèi)容較為綜合,學(xué)生需要認(rèn)真分析題目,化動(dòng)為靜去解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長井深各幾何?

譯文:用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

③猜測(cè)(1﹣)(1+)與1﹣(2 有關(guān)系:(1﹣)(1+   1﹣(2.(用“=”“<”“>”填空)

(2)計(jì)算:[1﹣(2]×[1﹣(2]×[1﹣(2]×…×[1﹣(2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B(2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c為三角形三個(gè)邊, +bxx-1)= -2b是關(guān)于x的一元二次方程嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程 +2 x-6=0的根是(  )
A. = =
B. =0, =-2
C. = =-3
D. =- , =3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=k1x+b與x軸,y軸相交于P,Q兩點(diǎn),則y= 的圖象相交于A(﹣2,m),B(1,n)兩點(diǎn),連接OA,OB,給出下列結(jié)論:①k1k2<0;②m+ n=0;③SAOP=SBOQ;④不等式k1x+b> 的解集在x<﹣2或0<x<1,其中正確的結(jié)論是(
A.②③④
B.①②③④
C.③④
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

同步練習(xí)冊(cè)答案