【題目】如圖,一束光線在兩面玻璃墻內(nèi)進(jìn)行傳播,路徑為A→B→C→D,根據(jù)光的反射性質(zhì),∠1=∠2,∠3=∠4,若∠2+∠390°,試探究直線ABCD是否平行?并說明理由.

【答案】ABCD.

【解析】

利用平角的定義得到∠ABC180°-∠1-∠2,∠BCD180°-∠3-∠4,根據(jù)∠1=∠2,∠3=∠4,且∠2+∠390°,得到∠ABC+BCD=180°,于是根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行可判斷直線ABCD平行.

ABCD.理由:

∵∠ABC180°-∠1-∠2,∠BCD180°-∠3-∠4,∠1=∠2,∠3=∠4

∴∠ABC180°22,∠BCD180°23

∴∠ABC+∠BCD180°22180°23360°2(2+∠3),

∵∠2+∠390°

∴∠ABC+∠BCD360°2×90°180°,

ABCD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,DCB=70°,CBF=20°,EFB=130°,

(1)問直線EFAB有怎樣的位置關(guān)系?加以證明;

(2)若∠CEF=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動(dòng)點(diǎn)(不含B、C兩點(diǎn)),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的有(寫出所有正確結(jié)論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當(dāng)△ABP≌△ADN時(shí),BP=4 ﹣4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下面四種說法:①面積最大的是亞洲;②南美洲、北美洲、歐洲約占總面積的50%;③非洲約占全球面積的;④南美洲的面積約是大洋洲面積的2倍,其中正確的說法有( )

A. ①② B. ①②③④ C. ①④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行數(shù)學(xué)知識競賽,分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中所給信息解答下列問題:

(1)二等獎(jiǎng)所占的比例是多少?

(2)這次數(shù)學(xué)知識競賽獲得二等獎(jiǎng)的有多少人?

(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的材料,然后解答問題.

通過計(jì)算,發(fā)現(xiàn):

方程x2的解為x2x;

方程x3的解為x3x

方程x4的解為x4x;

(1)觀察猜想:求關(guān)于x的方程xn的解;

(2)實(shí)踐運(yùn)用:對于關(guān)于x的方程xm的解,小明觀察得“xm”是該方程的一個(gè)解,請你猜想該方程的另一個(gè)解,并用方程的解的概念對該解進(jìn)行驗(yàn)證;

(3)拓展延伸:請利用上面的規(guī)律,求關(guān)于x的方程xa的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD90°

1)點(diǎn)B在直線   上,點(diǎn)D在直線   外;

2)直線   與直線   相交于點(diǎn)A,點(diǎn)D是直線   與直線   的交點(diǎn),也是直線   與直線   的交點(diǎn),又是直線   與直線   的交點(diǎn);

3)直線   ⊥直線   ,垂足為點(diǎn)   ;

4)過點(diǎn)D有且只有   條直線與直線AC垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線x軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,點(diǎn)C在線段OA上,將沿直線BC翻折,點(diǎn)Ay軸上的點(diǎn)D(0,4)恰好重合.

(1)求直線AB的表達(dá)式.

(2)已知點(diǎn)E(0,3),點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),連接PD,PE,當(dāng)PDE的周長取得最小值時(shí),求點(diǎn)P的坐標(biāo)。

(3)在坐標(biāo)軸上是否存在一點(diǎn)H,使得HABABC的面積相等?若存在,求出滿足條件的點(diǎn)H的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖1,在數(shù)軸上點(diǎn)M表示的數(shù)是﹣6,點(diǎn)N表示的數(shù)是3,求線段MN的中點(diǎn)K所示的數(shù).

對于求中點(diǎn)表示數(shù)的問題,只要用點(diǎn)N所表示的數(shù)3,加上點(diǎn)M所表示的數(shù)﹣6,得到的結(jié)果再除以2,就可以得到中點(diǎn)K所表示的數(shù);即K點(diǎn)表示的數(shù)為=﹣1.5

利用材料中知識解決下面問題:

如圖2,已知數(shù)軸上有A、B、C、D四點(diǎn),A點(diǎn)表示數(shù)為﹣6,B點(diǎn)表示的數(shù)是﹣4,線段AD=18,BC=3CD.

(1)點(diǎn)D所表示的數(shù)是   

(2)若點(diǎn)B以每秒4個(gè)單位的速度向右運(yùn)動(dòng),點(diǎn)D以每秒1個(gè)單位的速度向左運(yùn)動(dòng),同時(shí)運(yùn)動(dòng)t秒后,當(dāng)點(diǎn)C為線段BD的中點(diǎn)時(shí),求t的值;

(3)(2)中點(diǎn)B、點(diǎn)D的運(yùn)動(dòng)速度運(yùn)動(dòng)方向不變,點(diǎn)A以每秒10個(gè)單位的速度向右運(yùn)動(dòng),點(diǎn)C以每秒3個(gè)單位的速度向左運(yùn)動(dòng),點(diǎn)P是線段AC的中點(diǎn),點(diǎn)Q是線段BD的中點(diǎn),A、B、C、D四點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,求線段PQ的長(用含t的式子表示).

查看答案和解析>>

同步練習(xí)冊答案