【題目】如圖,在中,,,點(diǎn)邊上一動(dòng)點(diǎn),于點(diǎn),于點(diǎn),連結(jié),點(diǎn)的中點(diǎn),則的最小值為________

【答案】

【解析】

根據(jù)矩形的性質(zhì)就可以得出,EF,AP互相平分,且EF=AP,垂線段最短的性質(zhì)就可以得出APBC時(shí),AP的值最小,即AM的值最小,由勾股定理求出BC,根據(jù)面積關(guān)系建立等式求出其解即可.

∵四邊形AEPF是矩形,
EF,AP互相平分.且EF=AP,
EF,AP的交點(diǎn)就是M點(diǎn).
∵當(dāng)AP的值最小時(shí),AM的值就最小,
∴當(dāng)APBC時(shí),AP的值最小,即AM的值最小.
AP.BC=AB.AC,
AP.BC=AB.AC.
RtABC中,由勾股定理,得
BC=5.
AB=3,AC=4,
5AP=3×4
AP=
AM=.
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座建于若干年前的水庫(kù)大壩的橫斷面如圖所示,其中背水面的整個(gè)坡面是長(zhǎng)為米、寬為米的矩形.現(xiàn)需將其整修并進(jìn)行美化,方案如下:①將背水坡的坡度由改為②用一組與背水坡面長(zhǎng)邊垂直的平行線將背水坡面分成塊相同的矩形區(qū)域,依次相間地種草與栽花.

(1)求整修后背水坡面的面積;

(2)如果栽花的成本是每平方米元,種草的成本是每平方米元,那么種植花草至少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)急需銨肥8噸,在該農(nóng)場(chǎng)南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價(jià)750元;B公司有銨肥7噸,每噸售價(jià)700元,汽車每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.

(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);

(2)若農(nóng)場(chǎng)到B公司的路程是農(nóng)場(chǎng)到A公司路程的2倍,農(nóng)場(chǎng)到A公司的路程為m千米,設(shè)農(nóng)場(chǎng)從A公司購(gòu)買x噸銨肥,購(gòu)買8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購(gòu)買銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場(chǎng)建議總費(fèi)用最低的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)三條角平分線的交點(diǎn),,,且,,則點(diǎn)到三邊、的距離為(

A. 2cm,2cm,2cm B. 3cm,3cm,3cm

C. 4cm,4cm,4cm D. 2cm,3cm,5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的邊長(zhǎng)為,在各邊上順次截取,則邊形________,面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)四邊形的四個(gè)頂點(diǎn)分別作對(duì)角線、的平行線,所圍成的四邊形顯然是平行四邊形.

當(dāng)四邊形是分別菱形、矩形時(shí),相應(yīng)的平行四邊形一定是菱形、矩形、正方形中的哪一種?請(qǐng)將你的結(jié)論填入下表:

四邊形

菱形

矩形

平行四邊形

________

________

當(dāng)四邊形是矩形時(shí),平行四邊形是什么特殊圖形,證明你的結(jié)論;

反之,當(dāng)用上述方法所圍成的平行四邊形是矩形時(shí),相應(yīng)的原四邊形必須滿足怎樣的條件?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACBC,∠ACB90°,點(diǎn)D,E分別在AC,BC上,且CDCE

1)如圖1,求證:∠CAE=∠CBD

2)如圖2,FBD的中點(diǎn),求證:AECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;CF=2AF;SAEF:SCAB=1:4;AF2=2EF2.其中正確的結(jié)論有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)豐草蒜是安徽省特色水果,安徽省的特產(chǎn)之一,其產(chǎn)地長(zhǎng)豐縣是國(guó)家無(wú)公害草莓生產(chǎn)示范基地.小李從長(zhǎng)豐通過(guò)某快遞公司給在北京的姥姥寄一盒草莓,快遞時(shí),他了解到這個(gè)公司除收取每次8元的包裝費(fèi)外,草莓不超過(guò)1千克收費(fèi)22元,超過(guò)1千克,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從長(zhǎng)豐到北京快寄草莓的費(fèi)用為y(元),所寄草莓為x(千克)

1)求yx之間的函數(shù)關(guān)系式;

2)已知小李給姥嬈快寄了2.5千克草毒,請(qǐng)你求出這次快寄的費(fèi)用是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案