【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2交x軸于點A,交y軸于點B.
(1)求∠OAB的度數(shù);
(2)點M是直線y=﹣x+2上的一個動點,且⊙M的半徑為2,圓心為M,判斷原點O與⊙M的位置關(guān)系,并說明理由;
(3)當(dāng)⊙M與y軸相切時,直接寫出切點的坐標(biāo).
【答案】(1)30°;(2)點O在圓M外,理由見解析;(3)(0,)或(0,)
【解析】
(1)分別求出A與B的坐標(biāo),求出OA與OB的長,利用直角三角形性質(zhì)判斷即可;
(2)求出點O與圓心M的距離,與半徑比較大小即可;
(3)分M在第一象限與第二象限兩種情況,利用切線的性質(zhì)及直角三角形的性質(zhì)確定出切點坐標(biāo)即可.
解:(1)直線y=﹣x+2,
令x=0,得到y=2;令y=0,得到x=6,
∴OA=6,OB=2,
在Rt△AOB中,tan∠OAB==,
則∠OAB=30°;
(2)點O在圓M外,理由為:
當(dāng)OM⊥AB時,點M距離點O最近,此時OM=3,
∵3>2,
∴點O在圓M外;
(3)當(dāng)點M在第一象限時,設(shè)此時圓M與y軸相切于點N,可得MN=2,
∵∠BMN=∠BAO=30°,
∴設(shè)BN=x,則有BM=2x,
根據(jù)勾股定理得:x2+22=(2x)2,
解得:x=,即ON=OB﹣BN=2﹣=,
此時N坐標(biāo)為(0,);
當(dāng)點M在第二象限時,設(shè)此時圓M′與y軸相切于點N′,同理可得BN=′,
此時ON′=OB+BN′=,N坐標(biāo)為(0,),
綜上,圓M與y軸相切時,切點坐標(biāo)為(0,)或(0,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合與實踐課上,同學(xué)們以“一個含的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線且和直角三角形,,,.
操作發(fā)現(xiàn):
(1)在如圖1中,,求的度數(shù);
(2)如圖2,創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),說明理由;
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對于平面內(nèi)的點P和兩條曲線、給出如下定義:若從點P任意引出一條射線分別與、交于、,總有是定值,我們稱曲線與“曲似”,定值為“曲似比”,點P為“曲心”.
例如:如圖2,以點為圓心,半徑分別為、都是常數(shù)的兩個同心圓、,從點任意引出一條射線分別與兩圓交于點M、N,因為總有是定值,所以同心圓與曲似,曲似比為,“曲心”為.
在平面直角坐標(biāo)系xOy中,直線與拋物線、分別交于點A、B,如圖3所示,試判斷兩拋物線是否曲似,并說明理由;
在的條件下,以O為圓心,OA為半徑作圓,過點B作x軸的垂線,垂足為C,是否存在k值,使與直線BC相切?若存在,求出k的值;若不存在,說明理由;
在、的條件下,若將“”改為“”,其他條件不變,當(dāng)存在與直線BC相切時,直接寫出m的取值范圍及k與m之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=﹣2x+2交x軸于點A,交y軸于點B,直線l2:y=x+1交x軸于點D,交y軸于點C,直線l1、l2交于點M.
(1)點M坐標(biāo)為_____;
(2)若點E在y軸上,且△BME是以BM為一腰的等腰三角形,則E點坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,若點從點出發(fā)以/的速度向點運動,點從點出發(fā)以/的速度向點運動,設(shè)、分別從點、同時出發(fā),運動的時間為.
(1)求、的長(用含的式子表示).
(2)當(dāng)為何值時,是以為底邊的等腰三角形?
(3)當(dāng)為何值時,//?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,,是邊上的中點,點,分別是邊,上的動點,點從頂點沿方向作勻速運動,點從從頂點沿方向同時出發(fā),且它們的運動速度相同,連接,.
(1)求證:.
(2)判斷線段與的位置及數(shù)量關(guān)系,并說明理由.
(3)在運動過程中,與的面積之和是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com