(2009•張家界)小明將一幅三角板如圖所示擺放在一起,發(fā)現(xiàn)只要知道其中一邊的長就可以求出其它各邊的長,若已知CD=2,求AC的長.

【答案】分析:在直角△BDC中根據(jù)勾股定理得到BC的長,進而在直角△ABC中,根據(jù)勾股定理,求出AC的長.
解答:解:∵BD=CD=2,
,
∴設AB=x,則AC=2x,

∴x2+8=4x2,
∴3x2=8,
∴x2=,
∴x=,
AC=2AB=
點評:本題解決的關鍵是利用勾股定理,先求出兩個直角三角形的公共邊BC.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2009•張家界)在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標為(-1,0),請按要求畫圖與作答.
(1)把△ABC繞點P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點C(0,2),過點C作圓的切線交x軸于點D.
(1)求過A,B,C三點的拋物線的解析式;
(2)求點D的坐標;
(3)設平行于x軸的直線交拋物線于E,F(xiàn)兩點,問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圓》(09)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點C(0,2),過點C作圓的切線交x軸于點D.
(1)求過A,B,C三點的拋物線的解析式;
(2)求點D的坐標;
(3)設平行于x軸的直線交拋物線于E,F(xiàn)兩點,問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省成都市石室錦城外國語中考數(shù)學模擬試卷(解析版) 題型:填空題

(2009•張家界)將函數(shù)y=-3x+3的圖象向上平移2個單位,得到函數(shù)    的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖南省張家界市中考數(shù)學試卷(解析版) 題型:解答題

(2009•張家界)在平面直角坐標系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點C(0,2),過點C作圓的切線交x軸于點D.
(1)求過A,B,C三點的拋物線的解析式;
(2)求點D的坐標;
(3)設平行于x軸的直線交拋物線于E,F(xiàn)兩點,問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案