【題目】如圖,一位同學想利用樹影測量樹高(AB),他在某一時刻測得高為1m的竹竿影長為0.9m,但當他馬上測量樹影時,因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上(CD),他先測得留在墻上的影高(CD)為1.2m,又測得地面部分的影長(BC)為2.7m,他測得的樹高應為多少米?

【答案】測得的樹高為4.2米.

【解析】

先求出墻上的影高CD落在地面上時的長度,再設(shè)樹高為h,根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.

解:設(shè)墻上的影高CD落在地面上時的長度為xm,樹高為hm,

∵某一時刻測得長為1m的竹竿影長為0.9m,墻上的影高CD1.2m

,解得x1.08m),

∴樹的影長為:1.08+2.73.78m),

,解得h4.2m).

答:測得的樹高為4.2米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC上一點,連接AE,點FAE上一點,連接FC,若∠BAE=∠EFC,CFCD,ABBC32,AF4,則FC的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點,連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,點AB、M、N均落在格點上,在圖①、圖②給定的網(wǎng)格中按要求作圖.

1)在圖①中的格線MN上確定一點P,使PAPB的長度之和最小

2)在圖②中的格線MN上確定一點Q,使∠AQM=∠BQM

要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,A=60°,若邊AC的垂直平分線DEAB于點D,連接CD,則△BDC的周長為( 。

A. 8 B. 9 C. 5+ D. 5+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ymx﹣1交y軸于點B,交x軸于點C,以BC為邊的正方形ABCD的頂點A(﹣1,a)在雙曲線y=﹣x<0)上,D點在雙曲線yx>0)上,則k的值為( 。

A. 6 B. 5 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD=∠ABC,補充一個條件,使得ABD≌△ABC,則下列選項不符合題意的是( 。

A. D=∠CB. DAB=∠CABC. BDBCD. ADAC

查看答案和解析>>

同步練習冊答案