【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )
A.8
B.10
C.11
D.12
【答案】A
【解析】作AH⊥BC于H,作直徑CF,連結BF,如圖,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
∴ = ,
∴DE=BF=6,
∵AH⊥BC,
∴CH=BH,
∵CA=AF,
∴AH為△CBF的中位線,
∴AH= BF=3.
∴BH= = =4,
∴BC=2BH=8.
故答案為:A.
作直徑CF,連結BF,作AH⊥BC于H,首先依據(jù)等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,接下來,在Rt△BAH中,依據(jù)勾股定理可求得BH的長,然后依據(jù)垂徑定理可得到BC=2BH.
科目:初中數(shù)學 來源: 題型:
【題目】下面是兩位同學的一段對話:
聰聰:周末我們去國家博物館參觀“偉大的變革﹣﹣慶祝改革開放40周年大型展覽”吧.
明明:好啊,我家離國家博物館約30km,我坐地鐵先走,地鐵的平均行駛速度是公交車的1.5倍呢.
聰聰:嗯,我周末住奶奶家,離國家博物館只有5km,坐公交車,你出發(fā)40分鐘后我再出發(fā)就能和你同時到達.
根據(jù)對話內容,請你求出公交車和地鐵的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.
(B類)已知如圖,四邊形ABCD中,AB=BC,∠A=∠C,求證:AD=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為(、),BK的長是 , CK的長是;
②求點F的坐標;
③請直接寫出拋物線的函數(shù)表達式;
(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖中的圖形均可以由“基本圖案”通過變換得到.(填序號)
(1)通過平移變換但不能通過旋轉變換得到的圖案是__;
(2)可以通過旋轉變換但不能通過平移變換得到的圖案是__;
(3)既可以由平移變換,也可以由旋轉變換得到的圖案是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,以下四個結論:①a>0;②c>0;③b2﹣4ac>0;④﹣ <0,正確的是( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com