【題目】下面是兩位同學的一段對話:
聰聰:周末我們去國家博物館參觀“偉大的變革﹣﹣慶祝改革開放40周年大型展覽”吧.
明明:好啊,我家離國家博物館約30km,我坐地鐵先走,地鐵的平均行駛速度是公交車的1.5倍呢.
聰聰:嗯,我周末住奶奶家,離國家博物館只有5km,坐公交車,你出發(fā)40分鐘后我再出發(fā)就能和你同時到達.
根據對話內容,請你求出公交車和地鐵的平均行駛速度.
科目:初中數學 來源: 題型:
【題目】如圖,點A是線段DE上一點,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,BD、CE、DE有什么數量關系?并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國傳統數學最重要的著作,奠定了中國傳統數學的基本框架.其中記載了一個“折竹抵地”問題:“今有竹高二丈,末折抵地,去本六尺,問折者高幾何?”
譯文:“有一根竹子,原高二丈(1丈=10尺),現被風折斷,竹梢觸地面處與竹根的距離為6尺,問折斷處離地面的高度為多少尺?”
如圖,我們用點A,B,C分別表示竹梢,竹根和折斷處,設折斷處離地面的高度BC=x尺,則可列方程為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.
(1)求證:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個“東方時尚島、海上新溫州”.為了解溫州市民對甌江口新區(qū)的關注情況,某學校數學興趣小組隨機采訪部分溫州市民,對采訪情況制作了統計圖表的一部分如下:
關注情況 | 頻數 | 頻率 |
A.高度關注 | m | 0.1 |
B.一般關注 | 100 | 0.5 |
C.不關注 | 30 | n |
D.不知道 | 50 | 0.25 |
(1)根據上述統計表可得此次采訪的人數為人;m= , n=;
(2)根據以上信息補全條形統計圖;
(3)根據上述采訪結果,估計25000名溫州市民中高度關注甌江口新區(qū)的市民約人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,cosB=0.6,把這個直角三角形繞頂點C旋轉后得到Rt△A'B'C,其中點B'正好落在AB上,A'B'與AC相交于點D,那么B′D:CD= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、O是正方形網格上的三個格點,⊙O的半徑為OA,點P是優(yōu)弧 上的一點,則cos∠APB的值是( )
A.45°
B.1
C.
D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )
A.8
B.10
C.11
D.12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com