【題目】某校為美化校園,計(jì)劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
【答案】(1)100,50;(2)10.
【解析】
試題(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,列出方程,求解即可;
(2)設(shè)應(yīng)安排甲隊(duì)工作y天,根據(jù)這次的綠化總費(fèi)用不超過8萬元,列出不等式,求解即可.
試題解析:(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)題意得:
解得:x=50,
經(jīng)檢驗(yàn)x=50是原方程的解,
則甲工程隊(duì)每天能完成綠化的面積是50×2=100(m2),
答:甲、乙兩工程隊(duì)每天能完成綠化的面積分別是100m2、50m2;
(2)設(shè)應(yīng)安排甲隊(duì)工作y天,根據(jù)題意得:
0.4y+×0.25≤8,
解得:y≥10,
答:至少應(yīng)安排甲隊(duì)工作10天.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn),我們把點(diǎn)叫做點(diǎn)的衍生點(diǎn).已知點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為這樣依次得到點(diǎn)若點(diǎn)的坐標(biāo)為,若點(diǎn)在第四象限,則范圍分別為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于點(diǎn)D,點(diǎn)M,N分別是BD和BC邊上的動(dòng)點(diǎn),則MN+MC的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接運(yùn)動(dòng)會,某校八年級學(xué)生開展了“短跑比賽”。甲、乙兩人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度與。
甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的時(shí)間用速度,另一半的時(shí)間用速度。
(1)甲、乙二人從A地到達(dá)B地的平均速度分別為;則___________,____________
(2)通過計(jì)算說明甲、乙誰先到達(dá)B地?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若BC=EC,∠BCE=∠ACD,則添加不能使△ABC≌△DBC的條件是( )
A.AB=DE B.∠B=∠E C.AC=DC D.∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動(dòng)AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某縣政府為了迎接“八一”建軍節(jié),加強(qiáng)軍民共建活動(dòng),計(jì)劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個(gè),在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)
(1)某校某年級一班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請你幫忙設(shè)計(jì)出來.
(2)如果搭配及擺放一個(gè)A造型需要的人力是8人次,搭配及擺放一個(gè)B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請說明理由.
造型數(shù)量花 | A | B |
甲種 | 80 | 50 |
乙種 | 40 | 90 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com