【題目】如圖,已知A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P3cm/s的速度向點B移動,點Q2cm/s的速度向點D移動,當點P運動到點B停止時,點Q也隨之停止運動,問

(1)P、Q兩點從開始出發(fā)多長時間時,四邊形PBCQ的面積是33?

(2)P、Q兩點從開始出發(fā)多長時間時,點PQ之間的距離是10cm?

【答案】(1) 5;(2) 4.8秒或1.6

【解析】

(1)根據(jù)矩形和正方形的性質(zhì),利用梯形面積的求算方法,找出等量關(guān)系列出方程求解即可;

(2)作PE⊥CD,垂足為E,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.

(1)依題意得

AP=3t,

BP=AB-AP=16-3t,

CQ=2t,

DQ=DC-CQ=16-2t,

S梯形PBCQ﹙CQ+PB﹚BC.

又∵S梯形PBCQ﹦33,

﹙2t+16-3t﹚×6=33,

解得t=5.

答:P、Q兩點出發(fā)后5秒時,四邊形PBCQ的面積為33cm2

(2)過點PPECDCDE.

QE=DQ-AP=16-5t,

RtPQE中,

PE2+QE2=PQ2

可得:(16-5t)2+62=102,

解得t1=4.8,t2=1.6.

P、Q兩點從開始出發(fā)4.8秒或1.6秒時,點PQ之間的距離是10cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如圖1,在ABC看,把ABA順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當α+β=180°時,我們稱A'B'C'ABC旋補三角形”,AB'C'B'C'上的中線AD叫做ABC旋補中線,點A叫做旋補中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補三角形”,ADABC旋補中線”.

①如圖2,當ABC為等邊三角形時,ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當∠BAC=90°,BC=8時,則AD長為   

猜想論證:

(2)在圖1中,當ABC為任意三角形時,猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠ABC,射線BC上一點D.

(1)求作:等腰PBD,使線段BD為等腰PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.

(2)(1)的條件下,若DPAB,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形AOBC中,ACOB,頂點O是原點,頂點A的坐標為(0,8),AC24cm,OB26cm,點P從點A出發(fā),以1cm/s的速度向點C運動,點Q從點B同時出發(fā),以3m/s的速度向點O運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動;從運動開始,設PQ)點運動的時間為ts

1)求直線BC的函數(shù)解析式;

2)當t為何值時,四邊形AOQP是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,D為ABC內(nèi)一點, BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的長;

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點B、D,點A的坐標為(0,﹣1),ABx軸,CD經(jīng)過點(0,2),ABCD的面積是18,則點D的坐標是(  )

A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象上分別與x軸,y軸交于A、B兩點,正比例函數(shù)的圖象交于點

1)求m的值;

2)求直線的解析式;

3-次函數(shù)的圖象為直線,且,,可以圍成三角形,求k的取值范圍.

查看答案和解析>>

同步練習冊答案