【題目】7分)某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

【答案】(1)作圖見試題解析;(2)1.5m/s.

【解析】

試題分析:(1)利用中心投影的定義圖;

(2)設(shè)小明原來的速度為xm/s,則CE=2xm,AM=(4x﹣1.2)m,EG=3xm,BM=13.2﹣4x,OCE∽△OAM,OEG∽△OMB,得到,即代入解方程即可

試題解析:(1)如圖,

(2)設(shè)小明原來的速度為xm/s,則CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,點C,E,G在一條直線上,CGAB,∴△OCE∽△OAM,OEG∽△OMB,,,即,解得x=1.5,經(jīng)檢驗x=1.5為方程的解,小明原來的速度為1.5m/s.

答:小明原來的速度為1.5m/s.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.

當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4ADBC邊上的中線,FAD邊上的動點EAC邊上一點AE2,EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現(xiàn)在分別位于點和點處,均在的中垂線上,且、到大樓的距離分別為米和米,又已知米,米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時間有多少小時?

(2)求k的值;

(3)當x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P3cm/s的速度向點B移動,點Q2cm/s的速度向點D移動,當點P運動到點B停止時,點Q也隨之停止運動,問

(1)P、Q兩點從開始出發(fā)多長時間時,四邊形PBCQ的面積是33?

(2)P、Q兩點從開始出發(fā)多長時間時,點PQ之間的距離是10cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖:在△ABC中,∠B=90°,∠A=30°,BC=5cm,等腰RtDEF中,∠FDE=,DE=3cm。動點DE始終在邊AB上,當點DA點沿AC方向移動。

1)在RtDEF沿AC方向移動的過程中,F,C兩點之間的距離逐漸_______。(填“不變“變大”或“變小”)

2)當FC連線與AB平行時,求AD的長。

3)以線段ADFC、BC的長度為三邊長的三角形是直角三角形時,求AD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知拋物線和直線.我們約定:當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.

下列判斷: 當x>2時,M=y2;

當x<0時,x值越大,M值越大;

使得M大于4的x值不存在;

若M=2,則x= 1 .

其中正確的有

A.1個 B.2個 C. 3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),RtAOB中,∠A=90°,AOB=60°,OB=,AOB的平分線OCABC,過O點做與OB垂直的直線ON.動點P從點B出發(fā)沿折線BCCO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發(fā)沿折線COON以相同的速度運動,當點P到達點OP、Q同時停止運動.

1)求OCBC的長;

2)設(shè)CPQ的面積為S,求St的函數(shù)關(guān)系式;

3)當POCQON上運動時,如圖(2),設(shè)PQOA交于點M,當t為何值時,OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

同步練習冊答案