【題目】將108個蘋果放到一些盒子中,盒子有三種規(guī)格:一種可以裝10個蘋果,一種可以裝9個蘋果,一種可以裝6個蘋果,要求每種規(guī)格都要有且每個盒子均恰好裝滿,則不同的裝法總數(shù)為_____.
【答案】6.
【解析】
先列出方程10x+9y+6z=108,再根據(jù)x,y,z是正整數(shù),進行計算即可得出結論.
解:設裝10個蘋果的有x盒,裝9個蘋果的有y盒,裝6個蘋果的有z盒,
∵每種規(guī)格都要有且每個盒子均恰好裝滿,
∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整數(shù),
則10x+9y+6z=108,
∴x==,
∵0<x<10,且為整數(shù),
∴36﹣3y﹣2z是10的倍數(shù),
即:36﹣3y﹣2z=10或20或30,
當36﹣3y﹣2z=10時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴26﹣2z=3或6或9或12或15或18或21或24,
∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z=(舍)或z=1,
當z=10時,y=2,x=3,
當z=7時,y=4,x=3,
當z=4時,y=8,x=3
當z=1時,y=8,x=3,
當36﹣3y﹣2z=20時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴16﹣2z=3或6或9或12或15或18或21或24,
∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)
當z=5時,y=2,x=6,
當z=2時,y=4,x=6,
當36﹣3y﹣2z=30時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴6﹣2z=3,
∴z=(舍)
即:滿足條件的不同的裝法有6種,
故答案為6.
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內的垃圾,租用甲、乙兩車運送,若兩車合作,各運12趟才能完成,需支付運費共4 800元.若甲、乙兩車單獨運完此堆垃圾,則乙車所運趟數(shù)是甲車的2倍,已知乙車每趟運費比甲車少200元.
(1)分別求出甲、乙兩車每趟的運費;
(2)若單獨租用甲車運完此堆垃圾,需多少趟?
(3)若同時租用甲、乙兩車,則甲車運x趟,乙車運y趟,才能運完此堆垃圾,其中x,y均為正整數(shù).
①當x=10時,y= ;當y=10時,x= ;
②用含x的代數(shù)式表示y;
探究:
(4)在(3)的條件下:
①用含x的代數(shù)式表示總運費w;
②要想總運費不大于4 000元,甲車最多需運多少趟?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發(fā)箴言條數(shù)的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:
(1)求該班團員在這一個月內所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;
(2)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結論:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中結論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們不妨把橫坐標和縱坐標相等的點叫“夢之點”,例如點(1,1),(﹣2,﹣2),,…都是“夢之點”,顯然“夢之點”有無數(shù)個.
(1)若點P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢之點”,求這個反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s為常數(shù))的圖象上存在“夢之點”嗎?若存在,請求出“夢之點”的坐標,若不存在,說明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個“夢之點”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點與正方形的頂點重合,三角板的一邊交于點.另一邊交的延長線于點.
(1)觀察猜想:線段與線段的數(shù)量關系是 ;
(2)探究證明:如圖2,移動三角板,使頂點始終在正方形的對角線上,其他條件不變,(1)中的結論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:
(3)拓展延伸:如圖3,將(2)中的“正方形”改為“矩形”,且使三角板的一邊經(jīng)過點,其他條件不變,若、,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,婁星區(qū)某中學數(shù)學興趣小組在婁底城區(qū)范圍內進行了抽樣調查,將調查結果分為非常滿意,滿意,一般,不滿意四類,回收、整理好全部問卷后,繪制了兩幅不完整的統(tǒng)計圖1、圖2,結合圖中信息,回答:
(1)此次共調查了多少名市民?
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若我市城區(qū)共有480000人口,請估算我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,半徑為1的動圓圓心M從A點出發(fā),沿著AB方向以1個單位長度/每秒的速度勻速運動,同時動點N從點B出發(fā),沿著BD方向也以1個單位長度/每秒的速度勻速運動,設運動的時間為t秒(0≤t≤2.5),以點N為圓心,NB的長為半徑的⊙N與BD,AB的交點分別為E,F,連結EF,ME.
(1)①當t= 秒時,⊙N恰好經(jīng)過點M;②在運動過程中,當⊙M與△ABD的邊相切時,t= 秒;
(2)當⊙M經(jīng)過點B時,①求N到AD的距離;②求⊙N被AD截得的弦長;
(3)若⊙N與線段ME只有一個公共點時,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com