【題目】如圖,在四邊形ABCD中,,AB>CDAD=AB+CD.

(1)利用尺規(guī)作ADC的平分線DE,交BC于點(diǎn)E,在AD上截取AF=AB,連接AEEF(保留作圖痕跡,不寫作法);

(2)(1)的條件下,證明:EC=EF;AEDE

【答案】(1)見解析;(2)證明見解析;證明見解析.

【解析】

1)根據(jù)角平分線畫法作圖即可;(2)①利用條件證得△CDE≌△FDE即可;②先證得RtAFERtABE,然后利用等角代換與平行線證明與性質(zhì),即可得證

(1)如圖所示;

(2)證明:DE評(píng)分∠ADC

∴∠1=2

AD=AB+CD,AF=AB

DF=CD

在△CDE和△DEF

∴△CDE≌△FDE

CE=EF

∵△CDE≌△FDE

∴∠C=3=90°

∴∠4=90°

∴∠4=B=ADB

RtAFERtABE

RtAFERtABE

∴∠5=6=BAD

∵∠C=B=90°

∴∠C+B=180°

DCAB

∴∠BAD+ADB=180°

∴∠2+5=90°

∴∠DEB=90°

AEDE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖,把經(jīng)過(guò)拋物線 (,, ,為常數(shù))軸的交點(diǎn)和頂點(diǎn)的直線稱為拋物線的“伴線”,若拋物線與軸交于兩點(diǎn)(的右側(cè)),經(jīng)過(guò)點(diǎn)和點(diǎn)的直線稱為拋物線的“標(biāo)線”.

(1)已知拋物線,求伴線的解析式.

(2)若伴線為,標(biāo)線為

①求拋物線的解析式;

②設(shè)為“標(biāo)線”上一動(dòng)點(diǎn),過(guò)平行于“伴線”,交“標(biāo)線”上方的拋物線于,求線段長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接雙十一,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2設(shè)每件童裝降價(jià)x時(shí),平均每天可盈利y元.

寫出yx的函數(shù)關(guān)系式;

當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

該專賣店要想平均每天盈利600元,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4.點(diǎn)G,E分別在邊ABCD上,點(diǎn)FH在對(duì)角線AC上.若四邊形EFGH是菱形,則AG的長(zhǎng)是(

A.B.5C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將拋物線y=ax2(a<0)平移到頂點(diǎn)M恰好落在直線y=x+3上,且拋物線過(guò)直線與y軸的交點(diǎn)A,設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為m(m>0).

(1)用含m的代數(shù)式表示a;

(2)如圖2,RtCBT與拋物線交于C、D、T三點(diǎn),∠B=90,BCx軸,CD=2,BD=t,BT=2t,△TDC的面積為4

①求拋物線方程;

②如圖3,P為拋物線AM段上任一點(diǎn),Q(0,4),連結(jié)QP并延長(zhǎng)交線段AMN,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,,以B為頂點(diǎn),作延長(zhǎng)線于點(diǎn)E.

1)求證:四邊形是矩形;

2)若,,點(diǎn)P從點(diǎn)E出發(fā),沿方向,以每秒1個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D出發(fā),沿方向,以每秒2個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為.

①若是等腰三角形,求t的值;

②若,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能夠成為直角三角形三邊長(zhǎng)的三個(gè)正整數(shù)稱為勾股數(shù),世界上第一次給出勾股數(shù)公式的是我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》,共勾股數(shù)的公式為:,其中是互質(zhì)的奇數(shù).

1)當(dāng)時(shí),求這個(gè)三角形的面積;

2)當(dāng)時(shí),計(jì)算三角形的周長(zhǎng)(用含的代數(shù)式表示),并直接寫出符合條件的三角形的周長(zhǎng)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+1與圖數(shù)y的限象交于A(﹣2a),B兩點(diǎn).

1)寫出a,k的值________;

2)已知點(diǎn)P0n),過(guò)點(diǎn)P作平行于x軸的直線l,交函數(shù)y的圖象于點(diǎn) Cx1 y1),交直線 y=﹣x+1的圖象于點(diǎn) Dx2y2),若|x1|≤|x2|,結(jié)合函數(shù)圖象,請(qǐng)寫出 m的取值范圍________

查看答案和解析>>

同步練習(xí)冊(cè)答案