【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論:①=;②=;③=;④=.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】①DE是△ABC的中位線,根據(jù)三角形的中位線等于第三邊長度的一半可判斷;②利用相似三角形面積的比等于相似比的平方可判定;③利用相似三角形的性質(zhì)可判斷;④利用OC:OD=BC:DE=2:1即可得到結(jié)論.
①∵BE、CD是△ABC的中線,即D、E是AB和AC的中點,∴DE是△ABC的中位線,∴DE=BC,即=, 故①正確;
②∵DE是△ABC的中位線,∴DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故②錯誤;
③∵DE∥BC,∴△ADE∽△ABC∴=,△DOE∽△COB,∴=,∴=,故③正確;
④∵DE是△ABC的中位線,∴DE∥BC,2DE=BC,∴△DOE∽△COB,∴OC:OD=BC:DE=2,∴DC=3OD,∴3S△BOD=S△BDC,∴=,故④正確.
綜上所述:①③④正確.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點O.△ADE的周長為6cm.
(1)求BC的長;
(2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點E,與線段AD交于點F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在徐匯區(qū)開展“創(chuàng)建全國文明城區(qū)”期間,某工程隊承擔了某小區(qū)900米長的污水管道改造任務,工程隊在改造完180米管道后,引進了新設備,每天的工作效率比原來提高了20%,結(jié)果共用30天完成了任務,問引進新設備后工程隊每天改造管道多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為△ABC外一點,DC與AB交于點O,且∠BDC=∠BAC.
(1)求證:∠ABD=∠ACD;
(2)過點A作AM⊥CD于M,求證:BD+DM=CM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.求作∠ABC的平分線,分別交AD,AC于P,Q兩點,并證明AP=AQ.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com