【題目】如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)兩點(diǎn).

(1)求拋物線的解析式;
(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).

【答案】
(1)

解:∵拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)

∴將A與B兩點(diǎn)坐標(biāo)代入得:

解得: ,

∴拋物線的解析式是y=x2﹣3x


(2)

解:設(shè)直線OB的解析式為y=k1x,由點(diǎn)B(4,4),

得:4=4k1,解得:k1=1

∴直線OB的解析式為y=x,

∴直線OB向下平移m個(gè)單位長(zhǎng)度后的解析式為:y=x﹣m,

∵點(diǎn)D在拋物線y=x2﹣3x上,

∴可設(shè)D(x,x2﹣3x),

又∵點(diǎn)D在直線y=x﹣m上,

∴x2﹣3x=x﹣m,即x2﹣4x+m=0,

∵拋物線與直線只有一個(gè)公共點(diǎn),

∴△=16﹣4m=0,

解得:m=4,

此時(shí)x1=x2=2,y=x2﹣3x=﹣2,

∴D點(diǎn)的坐標(biāo)為(2,﹣2)


(3)

解:∵直線OB的解析式為y=x,且A(3,0),

∴點(diǎn)A關(guān)于直線OB的對(duì)稱點(diǎn)A′的坐標(biāo)是(0,3),

根據(jù)軸對(duì)稱性質(zhì)和三線合一性質(zhì)得出∠A′BO=∠ABO,

設(shè)直線A′B的解析式為y=k2x+3,過點(diǎn)(4,4),

∴4k2+3=4,解得:k2= ,

∴直線A′B的解析式是y= ,

∵∠NBO=∠ABO,∠A′BO=∠ABO,

∴BA′和BN重合,

即點(diǎn)N在直線A′B上,

∴設(shè)點(diǎn)N(n, ),又點(diǎn)N在拋物線y=x2﹣3x上,

=n2﹣3n,

解得:n1=﹣ ,n2=4(不合題意,舍去)

∴N點(diǎn)的坐標(biāo)為(﹣ , ).

方法一:

如圖1,將△NOB沿x軸翻折,得到△N1OB1

則N1(- ,- ),B1(4,﹣4),

∴O、D、B1都在直線y=﹣x上.

∵△P1OD∽△NOB,△NOB≌△N1OB1

∴△P1OD∽△N1OB1,

,

∴點(diǎn)P1的坐標(biāo)為(- ,- ).

將△OP1D沿直線y=﹣x翻折,可得另一個(gè)滿足條件的點(diǎn)P2 ),

綜上所述,點(diǎn)P的坐標(biāo)是(- ,- )或( , ).

方法二:

如圖2,將△NOB繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到△N2OB2,

則N2 , ),B2(4,﹣4),

∴O、D、B1都在直線y=﹣x上.

∵△P1OD∽△NOB,△NOB≌△N2OB2,

∴△P1OD∽△N2OB2,

,

∴點(diǎn)P1的坐標(biāo)為( ).

將△OP1D沿直線y=﹣x翻折,可得另一個(gè)滿足條件的點(diǎn)P2(- ,- ),

綜上所述,點(diǎn)P的坐標(biāo)是(- ,- )或( , ).

方法三:

∵直線OB:y=x是一三象限平分線,

∴A(3,0)關(guān)于直線OB的對(duì)稱點(diǎn)為A′(0,3),

得:x1=4(舍),x2=﹣ ,

∴N(﹣ , ),

∵D(2,﹣2),∴l(xiāng)OD:y=﹣x,

∵lOD:y=x,

∴OD⊥OB,

∵△POD∽△NOB,

∴N(﹣ , )旋轉(zhuǎn)90°后N1 , )或N關(guān)于x軸對(duì)稱點(diǎn)N2(﹣ ,﹣ ),

∵OB=4 ,OD=2

,

∵P為ON1或ON2中點(diǎn),

∴P1 , ),P2(- ,- ).


【解析】(1)利用待定系數(shù)法求出二次函數(shù)解析式即可;(2)根據(jù)已知條件可求出OB的解析式為y=x,則向下平移m個(gè)單位長(zhǎng)度后的解析式為:y=x﹣m.由于拋物線與直線只有一個(gè)公共點(diǎn),意味著聯(lián)立解析式后得到的一元二次方程,其根的判別式等于0,由此可求出m的值和D點(diǎn)坐標(biāo);(3)綜合利用幾何變換和相似關(guān)系求解.方法一:翻折變換,將△NOB沿x軸翻折;方法二:旋轉(zhuǎn)變換,將△NOB繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°.特別注意求出P點(diǎn)坐標(biāo)之后,該點(diǎn)關(guān)于直線y=﹣x的對(duì)稱點(diǎn)也滿足題意,即滿足題意的P點(diǎn)有兩個(gè),避免漏解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:數(shù)軸上、兩點(diǎn)表示的有理數(shù)分別為、,且,

的值.

數(shù)軸上的點(diǎn)兩點(diǎn)的距離的和為,求點(diǎn)在數(shù)軸上表示的數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60°,動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t= 秒時(shí),則OP= , SABP=;
(2)當(dāng)△ABP是直角三角形時(shí),求t的值;
(3)如圖2,當(dāng)AP=AB時(shí),過點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求證:AQBP=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.

1求每行駛1千米純用電的費(fèi)用;

2若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的切線互相垂直,垂足為D,AD交⊙O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若∠B=60°,CD=2 ,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)如圖1,點(diǎn)E、F在AC上,AB∥CD,AB=CD,AE=CF,求證:△ABF≌△CDE
(2)如圖2,方格紙中的每個(gè)小方格是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形. ①畫出將Rt△ABC向右平移5個(gè)單位長(zhǎng)度后的Rt△A1B1C1
②再將Rt△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的Rt△A2B2C2 , 并求出旋轉(zhuǎn)過程中線段A1C1所掃過的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?0分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲隊(duì)成績(jī)的中位數(shù)是分,乙隊(duì)成績(jī)的眾數(shù)是分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4分2 , 則成績(jī)較為整齊的是隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)CAB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒(x>0).

(1)當(dāng)x=   秒時(shí),點(diǎn)P到達(dá)點(diǎn)A

(2)運(yùn)動(dòng)過程中點(diǎn)P表示的數(shù)是   (用含x的代數(shù)式表示);

(3)當(dāng)P,C之間的距離為2個(gè)單位長(zhǎng)度時(shí),求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案