【題目】如圖,中,,,點為邊上的一個動點(不與點,及中點重合),連接,點關(guān)于直線的對稱點為點,直線,交于點.
(1)如圖1,當(dāng)時,根據(jù)題意將圖形補充完整,并直接寫出的度數(shù);
(2)如圖2,當(dāng)時,用等式表示線段,,之間的數(shù)量關(guān)系,并加以證明.
【答案】(1)(2)
【解析】
(1)作AH⊥CD延長于H,延長AH到E,使AH=HE,連接BE并延長BE,交CD延長線于F,可證明CF是AE的中垂線,即可得點E是點關(guān)于直線的對稱點,根據(jù)中垂線的性質(zhì)及等腰三角形的性質(zhì)即可求出∠BFC的度數(shù);(2)由點關(guān)于直線的對稱點為點可得,即可證明,,,根據(jù)等腰三角形的性質(zhì)可得,進而可得,由通過等量代換可知,在和Rt△ABC中,利用勾股定理即可證明結(jié)論.
(1)如圖:過點A作AH⊥CD延長于H,延長AH到E,使AH=HE,連接BE并延長BE,交CD延長線于F,
連接CE,
∵AH=EH,CH⊥AE,
∴CF是AE的中垂線,
∴點E是點關(guān)于直線的對稱點,
∴圖形即為所求.
∵CF是AE的中垂線,
∴AC=CE,
∵∠ACD=15°,
∴∠ACE=30°,∠FCE=15°,
∵∠ACB=90°,
∴∠ECB=60°,
∵AC=BC,
∴CE=BC,
∴∠CEB=60°,
∴∠BFC=∠CEB-∠FCE=60°-15°=45°.
(2)猜想:.
證明:連接,,延長,交于點,
∵點關(guān)于直線的對稱點為點,
∴.
∴,,.
∵,
∴.
∴.
∴.
∵,
∴.
∴.
∴.
在中,.
∵在中,,
∴.
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與 -2之差的絕對值,實際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對的兩點之間的距離,則使得這樣的整數(shù)有____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點,在數(shù)軸上對應(yīng)的數(shù)為,,則稱為點和之間的距離,記作.已知數(shù)軸上兩點,對應(yīng)的數(shù)分別為和,且滿足,點為數(shù)軸上一動點,其對應(yīng)的數(shù)為.
(1)若點到點和的距離相等,則點對應(yīng)的數(shù)是_________.
(2)數(shù)軸上是否存在點,使?若存在,請求出的值;若不存在,請說明理由.
(3)當(dāng)點以每秒1個單位長度的速度從原點向左運動時,點以每秒3個單位長度向左運動,點以每秒15個單位長度向左運動,若它們同時出發(fā),幾秒鐘后點到點和的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.
(1)證明:BC=DE;
(2)若AC=12,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,而假分?jǐn)?shù)都可化為常分?jǐn)?shù),如: = =2+ =2 .我們定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.如 , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;
解決下列問題:
(1)分式 是 分式(填“真分式”或“假分式”);
(2) 將假分式化為帶分式;
(3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術(shù)指導(dǎo),并負擔(dān)每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,在的外部作等邊三角形,為的中點,連接并延長交于點,連接.
(1)如圖1,若,求的度數(shù);
(2)如圖2,的平分線交于點,交于點,連接.
①補全圖2;
②若,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com