如圖,Rt△ACB中,∠ACB=,CD⊥AB于D,DE⊥BC于E,∠A=,BE=,則AB的長為

[  ]

A.1
B.2
C.3
D.4
答案:D
解析:

CDABD,DEBCE

則DE∥AC

∠A=30°,BE=

則BD=1

∠DAE+∠ACD=90°

∠ACD+∠A=90°

則∠DCE=∠A=30°,則CB=2BD=2,

在Rt△ABC中,∠A=30°,則AB=2BC=4

故選D


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,則∠A=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ACB中,∠ACB=90°,點(diǎn)D、E在AB上,AC=AD,BE=BC,則∠DCE的大小是
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四邊形ABDE=
3
2
S△ABP,其中正確的是( 。
A、①③B、①②④
C、①②③D、②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ACB中,∠ACB=90°,∠ABC的角平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點(diǎn)H,交BC的延長線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD-AH=AB;④DG=AP+GH.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H. 
求證:①PF=PA;     ②AH+BD=AB.

查看答案和解析>>

同步練習(xí)冊答案