【題目】如圖,在平面直角坐標系中,A、B兩點分別在x軸和y軸上,OA=1,OB=,連接AB,過AB中點C1分別作x軸和y軸的垂線,垂足分別是點A1、B1,連接A1B1,再過A1B1中點C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點Cn的坐標為 ___________

【答案】

【解析】首先利用三角形中位線定理可求出B1C1的長和C1A1的長,即C1的橫坐標和縱坐標,以此類推即可求出點Cn的坐標.

解:∵過AB中點C1分別作x軸和y軸的垂線,垂足分別是點A1、B1,

∴B1C1和C1A1是三角形OAB的中位線,

∴B1C1=OA=,C1A1=OB=,

∴C1的坐標為(, ),

同理可求出B2C2==,C2A2==

∴C2的坐標為(, ),

…以此類推,

可求出BnCn=,CnAn=

∴點Cn的坐標為,

故答案為:

“點睛”本題考查了規(guī)律型:點的坐標的求解,用到的知識點是三角形中位線定理,解題的關鍵是正確求出C1和C2點的坐標,由此得到問題的一般規(guī)律.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算化簡
(1)10 +
(2) ÷(
(3)(2x3y)2(﹣2xy)+(﹣2x3y)3÷(2x2
(4)( ﹣1)÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.

(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,則下列五個結(jié)論:①AD上任意一點到AB,AC兩邊的距離相等;②AD上任意一點到B,C兩點的距離相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正確的有(

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣2x2先向左平移1個單位,再向下平移3個單位,所得拋物線是(
A.y=﹣2 (x+1)2+3
B.y=﹣2 (x+1)2﹣3
C.y=﹣2 (x﹣1)2﹣3
D.y=﹣2 (x﹣1)2+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點(3a﹣6,2a+10)是y軸上的點,則a的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點A重合,右端與點B重合.

(1)若將木棒沿數(shù)軸向右水平移動,則當它的左端移動到B點時,它的右端在數(shù)軸上所對應的數(shù)為20;若將木棒沿數(shù)軸向左水平移動,則當它的右端移動到A點時,則它的左端在數(shù)軸上所對應的數(shù)為5(單位:cm),由此可得到木棒長為cm.
(2)由題(1)的啟發(fā),請你能借助“數(shù)軸”這個工具幫助小紅解決下列問題:
問題:一天,小紅去問曾當過數(shù)學老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說:“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請求出爺爺現(xiàn)在多少歲了?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“等積線”,等積線被這個平面圖形截得的線段叫做該圖形的“等積線段”(例如三角形的中線就是三角形的等積線段).已知菱形的邊長為4,且有一個內(nèi)角為60°,設它的等積線段長為m,則m的取值范圍是.

查看答案和解析>>

同步練習冊答案