【題目】去年6月某日自治區(qū)部分市、縣的最高氣溫(℃)如下表:

區(qū)縣

吐魯番

塔城

和田

伊寧

庫爾勒

阿克蘇

昌吉

呼圖壁

鄯善

哈密

氣溫(℃)

33

32

32

30

30

29

29

31

30

28

則這10個(gè)市、縣該日最高氣溫的眾數(shù)和中位數(shù)分別是(
A.32,32
B.32,30
C.30,30
D.30,32

【答案】C
【解析】解:把10個(gè)數(shù)按從小到的順序排列得28,29,29,30,30,30,31,32,32,33, 30出現(xiàn)次數(shù)最多,所以這10個(gè)區(qū)縣該日最高氣溫的眾數(shù)是30;
第5個(gè)數(shù)和第6個(gè)數(shù)分別為30,30,所以中位數(shù)為 =30.
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用中位數(shù)、眾數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AD向點(diǎn)D勻速運(yùn)動(dòng),速度是1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿CB方向,在射線CB上勻速運(yùn)動(dòng),速度是2cm/s,過點(diǎn)P作PE∥AC交DC于點(diǎn)E,連接PQ、QE,PQ交AC于F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8),解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形PFCE是平行四邊形;
(2)設(shè)△PQE的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使得△PQE的面積為矩形ABCD面積的 ;
(4)是否存在某一時(shí)刻t,使得點(diǎn)E在線段PQ的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC50°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEO的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DEAC E,DFAC且交ABF.

(1)求證:ADF 是等腰三角形.

(2) DF=10cm,求 DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,梯形ABCD中,ADBCB=90°,AD=AB=4,BC=7,點(diǎn)EBC邊上,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)C'處.

(1)求∠C'DE的度數(shù);

(2)求C'DE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年6月某日自治區(qū)部分市、縣的最高氣溫(℃)如下表:

區(qū)縣

吐魯番

塔城

和田

伊寧

庫爾勒

阿克蘇

昌吉

呼圖壁

鄯善

哈密

氣溫(℃)

33

32

32

30

30

29

29

31

30

28

則這10個(gè)市、縣該日最高氣溫的眾數(shù)和中位數(shù)分別是(
A.32,32
B.32,30
C.30,30
D.30,32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點(diǎn)D在BC邊上,DP交AB邊于點(diǎn)E,DQ交AB邊于點(diǎn)O且交CA的延長線于點(diǎn)F(點(diǎn)F與點(diǎn)A不重合),設(shè)∠PDQ=∠B,BD=3.

(1)求證:△BDE∽△CFD;
(2)設(shè)BE=x,OA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)當(dāng)△AOF是等腰三角形時(shí),求BE的長.

查看答案和解析>>

同步練習(xí)冊答案