【題目】如圖1,MNEF,C為兩直線之間一點.

(1)如圖1,若MAC與EBC的平分線相交于點D,若ACB=100°,求ADB的度數(shù).

(2)如圖2,若CAM與CBE的平分線相交于點D,ACB與ADB有何數(shù)量關系?并證明你的結論.

(3)如圖3,若CAM的平分線與CBF的平分線所在的直線相交于點D,請直接寫出ACB與ADB之間的數(shù)量關系:

【答案】(1)ADB=50°;(2)ADB=180°﹣ACB;(3)ADB=90°﹣ACB.

【解析】

試題分析:(1)如圖1,根據(jù)平行線的性質得到1=ADH,2=BDH,MAC=ACG,EBC=BCG,根據(jù)角平分線的定義得到1=ACG,2=,即可得到結論;

(2)根據(jù)平行線的性質得到1=ADH,2=BDH,NAC=ACG,FBC=BCG,根據(jù)角平分線的定義得到1=ACG,2=,根據(jù)平角的定義即可得到結論;

(3)根據(jù)平行線的性質得到1=ADH,2=BDH,NAC=ACG,FBC=BCG,根據(jù)平行線的定義得到1=MAC,2=CBF,根據(jù)四邊形的內角和和角的和差即可得到結論.

解:(1)如圖1,過C作CGMN,DHMN,

MNEF,

MNCGDHEF,

∴∠1=ADH,2=BDH,

MAC=ACG,EBC=BCG,

∵∠MAC與EBC的平分線相交于點D,

∴∠1=ACG,2=,

∴∠ADB=ACG+BCG)=ACB;

∵∠ACB=100°,

∴∠ADB=50°;

(2)如圖2,過C作CGMN,DHMN,

MNEF,

MNCGDHEF,

∴∠1=ADH,2=BDH,

NAC=ACG,FBC=BCG,

∵∠MAC與EBC的平分線相交于點D,

∴∠1=ACG,2=,

∴∠ADB=1+2=MAC+EBC)=(180°﹣NAC+180°﹣FBC)=(360°﹣ACB),

∴∠ADB=180°﹣ACB;

(3)如圖3,過C作CGMN,DHMN,

MNEF,

MNCGDHEF,

∴∠1=ADH,2=BDH,

NAC=ACG,FBC=BCG,

∵∠MAC與FBC的平分線相交于點D,

∴∠1=MAC,2=CBF,

∵∠ADB=360°﹣1﹣(180°﹣2)﹣ACB=360°﹣MAC﹣(180°﹣CBF)﹣ACB=360°﹣(180°﹣ACG)﹣(180°﹣BCG)=90°﹣ACB.

∴∠ADB=90°﹣ACB.

故答案為:ADB=90°﹣ACB.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(-3,0)在( )

A. x軸正半軸上 B. x軸負半軸上

C. y軸正半軸上 D. y軸負半軸上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD

求證:∠EGF=90°

(1)把下列證明過程及理由補充完整.

(2 )請你用精煉準確的文字將上述結論總結出來.

證明:∵HG∥AB(已知)

∴∠1=∠3 (

又∵HG∥CD(已知)

∴∠2=∠4(同理)

∵AB∥CD(已知)

∴∠BEF+ =180° (

又∵EG平分∠BEF(已知)

∴∠1=

又∵FG平分∠EFD(已知)

∴∠2=∠EFD (同理)

∴∠1+∠2= +

∴∠1+∠2=90°

∴∠3+∠4=90°

即∠EGF=90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各語句:①對頂角相等嗎?②延長線段AB;③內錯角相等;④垂線段最短.其中真命題有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形的面積是6平方厘米,則這個正方形的邊長等于厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.

(1)求該拋物線的解析式;

(2)求該拋物線的對稱軸以及頂點坐標;

(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知3a-2的算術平方根是4,2a+b-2的算術平方根是3,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑50cm,弦ABCD,且AB40cm,CD48cm,求AB、CD之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是( )
A.p=﹣5,q=6
B.p=1,q=﹣6
C.p=1,q=6
D.p=﹣1,q=6

查看答案和解析>>

同步練習冊答案