【題目】已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD
求證:∠EGF=90°
(1)把下列證明過(guò)程及理由補(bǔ)充完整.
(2 )請(qǐng)你用精煉準(zhǔn)確的文字將上述結(jié)論總結(jié)出來(lái).
證明:∵HG∥AB(已知)
∴∠1=∠3 ( )
又∵HG∥CD(已知)
∴∠2=∠4(同理)
∵AB∥CD(已知)
∴∠BEF+ =180° ( )
又∵EG平分∠BEF(已知)
∴∠1=∠
又∵FG平分∠EFD(已知)
∴∠2=∠EFD (同理)
∴∠1+∠2=( + )
∴∠1+∠2=90°
∴∠3+∠4=90°
即∠EGF=90°.
【答案】見(jiàn)解析
【解析】
試題分析:此題首先由平行線(xiàn)的性質(zhì)得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,F(xiàn)G平分∠EFD得出∠1+∠2=90°,然后通過(guò)等量代換證出∠EGF=90°.
證明:∵HG∥AB(已知),
∴∠1=∠3,
又∵HG∥CD(已知),
∴∠2=∠4(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)),
又∵EG平分∠BEF(已知),
∴∠1=∠BEF(角平分線(xiàn)的定義),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD(角平分線(xiàn)的定義),
∴∠1+∠2=(∠BEF+∠EFD),
∴∠1+∠2=90°,
∴∠3+∠4=90°(等量代換)
即∠EGF=90°.
故答案為:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,∠EFD,兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ),角平分線(xiàn)的定義,EFD,∠BEF.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;
∠EFD; 兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);
∠BEF;角平分線(xiàn)的定義;
∠BEF;∠EFD;
兩條平行線(xiàn)被第三條直線(xiàn)所截,一組同旁?xún)?nèi)角的平分線(xiàn)互相垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:
①∠BOE=°;
②OF平分∠BOD;
③∠POE=∠BOF;
④∠POB=2∠DOF.
其中正確的個(gè)數(shù)有多少個(gè)?( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a=﹣2×32 , b=(﹣2×3)2 , c=﹣(2×3)2 , 則下列大小關(guān)系中正確的是( 。
A.a>b>c
B.b>c>a
C.b>a>c
D.c>a>b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC的三邊長(zhǎng)分別是a,b,c,且a+2ab=c+2bc,則△ABC是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線(xiàn)是拋物線(xiàn)y=x2+3x+1的一部分,如圖所示.
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圣誕節(jié)到了,商店進(jìn)行打折促銷(xiāo)活動(dòng).?huà)寢屢园苏鄣膬?yōu)惠購(gòu)買(mǎi)了一件運(yùn)動(dòng)服,節(jié)省28元,那么媽媽購(gòu)買(mǎi)這件衣服實(shí)際花費(fèi)了元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為1個(gè)單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問(wèn)題:
(1)寫(xiě)出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)畫(huà)出△ABC向右平移6個(gè)單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,MN∥EF,C為兩直線(xiàn)之間一點(diǎn).
(1)如圖1,若∠MAC與∠EBC的平分線(xiàn)相交于點(diǎn)D,若∠ACB=100°,求∠ADB的度數(shù).
(2)如圖2,若∠CAM與∠CBE的平分線(xiàn)相交于點(diǎn)D,∠ACB與∠ADB有何數(shù)量關(guān)系?并證明你的結(jié)論.
(3)如圖3,若∠CAM的平分線(xiàn)與∠CBF的平分線(xiàn)所在的直線(xiàn)相交于點(diǎn)D,請(qǐng)直接寫(xiě)出∠ACB與∠ADB之間的數(shù)量關(guān)系: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com