【題目】某校開(kāi)展以感恩教育為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書(shū)法、繪畫(huà)。要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動(dòng)。以九年級(jí)(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖。請(qǐng)你結(jié)合圖示所給出的信息解答下列問(wèn)題。
(1)求出參加繪畫(huà)比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計(jì)圖中參加書(shū)法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級(jí)學(xué)生有600人,請(qǐng)你估計(jì)這次藝術(shù)活動(dòng)中,參加演講和唱歌的學(xué)生各有多少人?
【答案】(1)20%(2)72°(3)240
【解析】試題分析:(1)各個(gè)項(xiàng)目的人數(shù)的和就是總?cè)藬?shù),然后利用參加繪畫(huà)比賽的學(xué)生數(shù)除以總?cè)藬?shù)即可求解;
(2)利用對(duì)應(yīng)的百分比乘以360度即可求解;
(3)利用總?cè)藬?shù)600乘以對(duì)應(yīng)的百分比即可求解.
解:(1)學(xué)生的總數(shù)是:×100%=50(人),
參加書(shū)法比賽的學(xué)生所占的比例是:×100%=20%,
則參加繪畫(huà)比賽的學(xué)生所占的比例是:1﹣28%﹣40%﹣20%=12%,
(2)參加書(shū)法比賽的學(xué)生所占的比例是20%,
則扇形的圓心角的度數(shù)是:360×20%=72°;
(3)參加演講比賽的人數(shù)是:600×28%=168(人),
參加唱歌比賽的人數(shù)是:600×40%=240(人).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD,AE分別是△ABC的高和中線,AB=3cm,AC=4cm,BC=5cm,∠CAB=90°,求:
(1)AD的長(zhǎng);
(2)△ACE和△ABE的周長(zhǎng)的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對(duì)應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|,利用數(shù)形結(jié)合思想回答下列問(wèn)題:
(1)數(shù)軸上表示2和10兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和﹣10兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上,x和﹣2兩點(diǎn)之間的距離是 ;
(3)若x表示一個(gè)有理數(shù),則|x﹣1|+|x+2|有最小值嗎?若有,請(qǐng)求出最小值,若沒(méi)有,寫(xiě)出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.
①求拋物線的解析式;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為5000次時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)試驗(yàn)估算這個(gè)不透明的盒子里黑球有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)全等多邊形的定義,我們把四個(gè)角,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1
(1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5,B90,D 60,則A1D1 ,B1 , A1C1 (直接寫(xiě)出答案);
(2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD交 BE于點(diǎn)O,連接F,求證:AOBFOE;
(3)如圖 2,若ABA1B1,BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過(guò)程中,∠N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com