【題目】如圖,O為直線AB上一點(diǎn),OM是∠AOC的角平分線,ON是∠COB的平分線
(1)指出圖中所有互為補(bǔ)角的角,
(2)求∠MON的度數(shù),
(3)指出圖中所有互為余角的角.
【答案】(1)∠AOM與∠MOB,∠AOC與∠BOC,∠AON與∠BON,∠COM與∠MOB,∠CON與∠AON;(2)90;(3)∠AOM與∠BON,∠COM與∠BON,∠CON與∠AOM,∠CON與∠COM
【解析】
(1)根據(jù)補(bǔ)角的定義:如果兩個(gè)角的和為180°,則這兩個(gè)角互為補(bǔ)角,觀察圖形,根據(jù)∠AOB=180°,即可解答.
(2)根據(jù)OM是∠AOC的角平分線,ON是∠COB的平分線,可得∠AOM=∠MOC,∠CON= NOB,此時(shí)結(jié)合∠AOB的度數(shù)即可得到∠MON的度數(shù).
(3)根據(jù)余角的定義:如果兩個(gè)角的和為90°,則這兩個(gè)角互為余角,結(jié)合∠MON的度數(shù),分析圖形,即可解答.
(1)∵∠AOB=180°
∴∠AOM+∠BOM=180°,∠AOC+∠BOC=180°,∠AON+∠BON=180,
又∵OM是∠AOC的角平分線,ON是∠COB的平分線,
∴∠AOM=∠MOC,∠CON= NOB,
∴∠COM+∠MOB=180°,∠CON+∠AON=180°.
故圖中所有互為補(bǔ)角的角有:∠AOM與∠MOB,∠AOC與∠BOC,∠AON與∠BON,∠COM與∠MOB,∠CON與∠AON.
(2)∵OM是∠AOC的角平分線,ON是∠COB的平分線,
∴∠MOC=∠AOC,∠CON=∠COB,
∴MON=∠MOC+∠CON=(∠AOC+∠COB)=∠AOB,
又∵∠AOB=180°,
∴MON=90°.
(3)∵OM是∠AOC的角平分線,ON是∠COB的平分線,
∴∠AOM=∠MOC,∠CON= NOB,
又∵MON=90°,
∴∠AOM+∠BON=90°,∠COM+∠BON=90°,∠CON+∠AOM=90°,∠CON+∠COM=90°
故圖中所有互為余角的角有:∠AOM與∠BON,∠COM與∠BON,∠CON與∠AOM,∠CON與∠COM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,AB=1,點(diǎn)F是對(duì)角線AC延長(zhǎng)線上一點(diǎn),以BC、CF為鄰邊作菱形BEFC,連接DE,則DE的長(zhǎng)是( ).
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將△ABC向下平移4個(gè)單位、再向右平移3個(gè)單位得到△A1B1C1,然后將△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°得到△A1B2C2.
(1)在網(wǎng)格中畫(huà)出△A1B1C1和△A1B2C2;
(2)計(jì)算線段AC從開(kāi)始變換到A1 C2的過(guò)程中掃過(guò)區(qū)域的面積(重疊部分不重復(fù)計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點(diǎn)A1、A2、A3,…和點(diǎn)B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點(diǎn)A3的坐標(biāo)是________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)共一個(gè)頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.
(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長(zhǎng);
(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張矩形紙片的長(zhǎng)AD=12,寬AB=2,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,將四邊形ABFE沿直線EF翻折后,點(diǎn)B落在邊AD的三等分點(diǎn)G處,則EG的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=25cm,BC=54cm,CD=30cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD=___°時(shí),四邊形BECD是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com