【題目】右圖中曲線是反比例函數(shù) 的圖象的一支.

(1)這個反比例函數(shù)圖象的另一支位于哪個象限?常數(shù)n的取值范圍是什么?
(2)若一次函數(shù) 的圖象與反比例函數(shù)的圖象交于點A,與x軸交于點B,△AOB的面積為2,求n的值.

【答案】
(1)

解:這個反比例函數(shù)圖象的另一支位于第四象限.

由n+7<0,

解得n<﹣7,

即常數(shù)n的取值范圍是n<﹣7


(2)

解:在 中令y=0,得x=2,

即OB=2.

過A作x軸的垂線,垂足為C,如圖.

∵SAOB=2,即 OBAC=2,

×2×AC=2,解得AC=2,即A點的縱坐標為2.

把y=2代入 中,得x=﹣1,即A(﹣1,2).

所以

解得n=﹣9


【解析】(1)根據(jù)反比例函數(shù)的性質(zhì)可求得反比例函數(shù)的圖象分布在第二、第四象限,所以n+7<0即可求解;(2)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S= |k|,可利用△AOB的面積求出n值.
【考點精析】關(guān)于本題考查的反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì),需要了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線MNABCD的頂點DA,BC三點,分別作MN的垂線,垂足分別是E,F,G

求證DEFG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式,屬于二元一次方程的個數(shù)有( )

xy+2xy=7; 4x+1=xy+y=5; x=yx2y2=2

⑥6x2y ⑦x+y+z=1 ⑧yy1=2y2y2+x

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】魯班家裝公司為芙蓉小區(qū)做家裝設(shè)計,調(diào)查員設(shè)計了如下問卷,對家裝風格進行專項調(diào)查.
通過隨機抽樣調(diào)查50家客戶,得到如下數(shù)據(jù):
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)請你補全下面的數(shù)據(jù)統(tǒng)計表: 家裝風格統(tǒng)計表

裝修風格

劃記

戶數(shù)

百分比

A中式

正正正正正

25

50%

B歐式

C韓式

5

10%

D其他

10%

合計

50

100%


(2)請用扇形統(tǒng)計圖描述(1)表中的統(tǒng)計數(shù)據(jù);(注:請標明各部分的圓心角度數(shù))
(3)如果公司準備招聘10名裝修設(shè)計師,你認為各種裝修風格的設(shè)計師應(yīng)分別招多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“2016國際大數(shù)據(jù)產(chǎn)業(yè)博覽會525日至529日在貴陽舉行.參展內(nèi)容為:A﹣經(jīng)濟和社會發(fā)展;B﹣產(chǎn)業(yè)與應(yīng)用;C﹣技術(shù)與趨勢;D﹣安全和隱私保護;E﹣電子商務(wù),共五大板塊,為了解觀眾對五大板塊的關(guān)注情況,某機構(gòu)進行了隨機問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:

1)本次隨機調(diào)查了多少名觀眾?

2)請補全統(tǒng)計圖,并求出扇形統(tǒng)計圖中“D﹣安全和隱私保護所對應(yīng)的扇形圓心角的度數(shù).

3)據(jù)相關(guān)報道,本次博覽會共吸引力90000名觀眾前來參觀,請估計關(guān)注“E﹣電子商務(wù)的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王偉準備用一段長30米的籬笆圍成一個三角形形狀的小圈,用于飼養(yǎng)家兔.已知第一條邊長為a米,由于受地勢限制,第二條邊長只能是第一條邊長的2倍多2米.
(1)請用a表示第三條邊長;
(2)問第一條邊長可以為7米嗎?請說明理由,并求出a的取值范圍;
(3)能否使得圍成的小圈是直角三角形形狀,且各邊長均為整數(shù)?若能,說明你的圍法;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2﹣2x+m﹣1與x軸只有一個交點,且與y軸交于A點,如圖,設(shè)它的頂點為B.

(1)求m的值;
(2)過A作x軸的平行線,交拋物線于點C,求證:△ABC是等腰直角三角形;

(3)將此拋物線向下平移4個單位后,得到拋物線C′,且與x軸的左半軸交于E點,與y軸交于F點,如圖.請在拋物線C′上求點P,使得△EFP是以EF為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問題解決:

如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證BE+CF>EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從分別標有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機抽取一張,所抽卡片上的數(shù)的絕對值不是正數(shù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案