【題目】.鞋子的“鞋碼”和鞋長(cm)存在一種換算關(guān)系,下表是幾組
“鞋碼”與鞋長換算的對應(yīng)數(shù)值:[注:“鞋碼”是表示鞋子大小的一種號碼]
鞋長(cm) | 16 | 19 | 21 | 24 |
鞋碼(號) | 22 | 28 | 32 | 38 |
(1)設(shè)鞋長為x,“鞋碼”為y,試判斷點(diǎn)(x,y)在你學(xué)過的哪種函數(shù)的圖象上?
(2)求x、y之間的函數(shù)關(guān)系式;(3)如果某人穿44號“鞋碼”的鞋,那么他的鞋長是多少?
【答案】(1)一次函數(shù). (2)(3)時,.
【解析】
(1)可利用函數(shù)圖象判斷這些點(diǎn)在一條直線上,即在一次函數(shù)的圖象上;
(2)可設(shè)y=kx+b,把兩個點(diǎn)的坐標(biāo)代入,利用方程組即可求解;
(3)令(2)中求出的解析式中的y等于44,求出x即可.
(1)如圖,這些點(diǎn)在一次函數(shù)的圖象上,
(2)設(shè)y=kx+b,
由題意得
解得
∴y=2x-10.(x是一些不連續(xù)的值.一般情況下,x取16、16.5、17、17.5、26、26.5、27等);
(3)y=44時,x=27.
答:此人的鞋長為27cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中卷第九“勾股”章,主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”譯文:“如圖,今有一座長方形小城,東西向城墻長7里,南北向城墻長9里,各城墻正中均開一城門.走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300步)你的計算結(jié)果是:出南門________步而見木.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只口袋里放著個紅球、個黑球和若干個白球,這三種球除顏色外沒有任何區(qū)別,并攪勻.
取出紅球的概率為,白球有多少個?
取出黑球的概率是多少?
再在原來的袋中放進(jìn)多少個紅球,能使取出紅球的概率達(dá)到?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=45°,點(diǎn)D是BC邊上一動點(diǎn)(與點(diǎn)B,C不重合),點(diǎn)E與點(diǎn)D關(guān)于直線AC對稱,連結(jié)AE,過點(diǎn)B作BF⊥ED的延長線于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)當(dāng)AE=BD時,用等式表示線段DE與BF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=(2m+4)x,求:
(1)m為何值時,函數(shù)圖象經(jīng)過第一、三象限?
(2)m為何值時,y隨x的增大而減?
(3)m為何值時,點(diǎn)(1,3)在該函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A以1的速度移動,同時點(diǎn)Q沿邊AB,BC從點(diǎn)A開始向點(diǎn)C以2的速度移動,當(dāng)點(diǎn)P移動到點(diǎn)A時,P、Q同時停止移動.設(shè)點(diǎn)P出發(fā)秒時,△PAQ的面積為,與的函數(shù)圖像如圖②,則下列四個結(jié)論:①當(dāng)點(diǎn)P移動到點(diǎn)A時,點(diǎn)Q移動到點(diǎn)C;②正方形邊長為6cm;③當(dāng)AP=AQ時,△PAQ面積達(dá)到最大值;④線段EF所在的直線對應(yīng)的函數(shù)關(guān)系式為,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:若一個三角形中存在兩邊的平方差等于第三邊上高的平方,則稱這個三角形為勾股高三角形,兩邊交點(diǎn)為勾股頂點(diǎn).
●特例感知
①等腰直角三角形 勾股高三角形(請?zhí)顚?/span>“是”或者“不是”);
②如圖1,已知△ABC為勾股高三角形,其中C為勾股頂點(diǎn),CD是AB邊上的高.若,試求線段CD的長度.
●深入探究
如圖2,已知△ABC為勾股高三角形,其中C為勾股頂點(diǎn)且CA>CB,CD是AB邊上的高.試探究線段AD與CB的數(shù)量關(guān)系,并給予證明;
●推廣應(yīng)用
如圖3,等腰△ABC為勾股高三角形,其中,CD為AB邊上的高,過點(diǎn)D向BC邊引平行線與AC邊交于點(diǎn)E.若,試求線段DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,翻折,使點(diǎn)落在斜邊上某一點(diǎn)處,折痕為(點(diǎn)、分別在邊、上)
當(dāng)時,若與相似(如圖),求的長;
當(dāng)點(diǎn)是的中點(diǎn)時(如圖),與相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在長方形OABC的邊OA上,連接BP,過點(diǎn)P作BP的垂線,交射線OC于點(diǎn)Q,在點(diǎn)P從點(diǎn)A出發(fā)沿AO方向運(yùn)動到點(diǎn)O的過程中,設(shè)AP=x,OQ=y,則下列說法正確的是( )
A.y隨x的增大而增大B.y隨x的增大而減小
C.隨x的增大,y先增大后減小D.隨x的增大,y先減小后增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com