【題目】如圖,在△ABC中,∠C=50°,圓O是△ABC的外接圓,AE為圓O的直徑,AEBC相交于點(diǎn)D,若AB=AD.則∠EAC=_______

【答案】20°

【解析】

連接CE,由直徑所對(duì)的圓周角是直角結(jié)合∠ACB=50°可求得∠BCE=40°,根據(jù)圓周角定理可得∠BAE=40°,由AB=AD可求出∠ADB=70°,最后由三角形外角的性質(zhì)可求出結(jié)果.

連接CE,如圖,

AE是⊙O的直徑,

∴∠ACE=90°,

∵∠ACB=50°

∴∠BCE=40°,

∵∠BAE,∠BCE是弧BE對(duì)的圓周角,

∴∠BAE=BCE=40°,

AB=AD

∴∠ADB=,

∵∠ADB=DAC+ACD,

∴∠DAC=ADB-ACB=70°-50°=20°

即∠EAC=20°

故答案為:20°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校5位家長(zhǎng)志愿者(32)為倡導(dǎo)“學(xué)習(xí)雷鋒、奉獻(xiàn)他人、提升白己”的志愿服務(wù)理念,積極參與文明城市創(chuàng)建活動(dòng),在人、車(chē)流動(dòng)量較大的重要路口、路段開(kāi)展“文明勸導(dǎo)”志愿服務(wù)活動(dòng).

1)若隨機(jī)安排一人到西華北路路段,則恰是男志愿者的概率為______;

2)若隨機(jī)安排兩人到蓮鄉(xiāng)大道路段,用列表法求出“全是男志愿者”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,等腰的底邊軸上,已知,拋物線(xiàn)(其中)經(jīng)過(guò)三點(diǎn),雙曲線(xiàn)(其中)經(jīng)過(guò)點(diǎn)軸,軸,垂足分別為

1)求出的值;當(dāng)為直角三角形時(shí),請(qǐng)求出的表達(dá)式;

2)當(dāng)為正三角形時(shí),直線(xiàn)平分,求時(shí)的取值范圍;

3)拋物線(xiàn)(其中)有一時(shí)刻恰好經(jīng)過(guò)點(diǎn),且此時(shí)拋物線(xiàn)與雙曲線(xiàn)(其中)有且只有一個(gè)公共點(diǎn)(其中),我們不妨把此時(shí)刻的記作,請(qǐng)直接寫(xiě)出拋物線(xiàn)(其中)與雙曲線(xiàn)(其中)有一個(gè)公共點(diǎn)時(shí)的取值范圍.(是已知數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,的直徑,點(diǎn)上,連接

1)求證:平分;

2)如圖2,連接,點(diǎn)上,連接,交于點(diǎn),求證:;

3)在(2)的條件下,點(diǎn)上,連接,,,交于點(diǎn),若,,,求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市對(duì)進(jìn)貨價(jià)為10元/千克的某種蘋(píng)果的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);

(2)應(yīng)怎樣確定銷(xiāo)售價(jià),使該品種蘋(píng)果的每天銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

1)甲說(shuō):該二次函數(shù)的圖象必定經(jīng)過(guò)點(diǎn).乙說(shuō):若圖象的頂點(diǎn)在x軸上,則,你覺(jué)得他們的結(jié)論對(duì)嗎?請(qǐng)說(shuō)明理由;

2)若拋物線(xiàn)經(jīng)過(guò),,求證

3)甲問(wèn)乙:我取的k是一個(gè)整數(shù),畫(huà)出它的圖象后發(fā)現(xiàn)拋物線(xiàn)與x軸的一個(gè)交點(diǎn)在y軸右側(cè),一個(gè)交點(diǎn)在原點(diǎn)和之間,你知道k等于幾嗎?并求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某個(gè)函數(shù),若自變量取實(shí)數(shù),其函數(shù)值恰好也等于時(shí),則稱(chēng)為這個(gè)函數(shù)的“等量值”.在函數(shù)存在“等量值”時(shí),該函數(shù)的最大“等量值”與最小“等量值”的差稱(chēng)為這個(gè)函數(shù)的“等量距離”,特別地,當(dāng)函數(shù)只有一個(gè)“等量值”時(shí),規(guī)定其“等最距離”0

1)請(qǐng)分別判斷函數(shù),,有沒(méi)有“等量值”?如果有,直接寫(xiě)出其“等量距離”;

2)已知函數(shù)

①若其“等量距離”為0,求的值;

②若,求其“等量距離”的取值范圍;

③若“等量距離”,直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ACB90°,∠A30°,BC6,D為斜邊AB上一點(diǎn),以CD、CB為邊作平行四邊形CDEB,當(dāng)AD_____時(shí),平行四邊形CDEB為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠C=90°,ADDB,點(diǎn)EAB的中點(diǎn),DEBC

1)求證:BD平分∠ABC;

2)連接EC,若∠A=30°,DC,求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案