【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC,求EC的長.
【答案】(1)證明見解析;(2).
【解析】
(1)直接利用直角三角形的性質得出DE=BEAB,再利用DE∥BC,得出∠2=∠3,進而得出答案;
(2)利用已知得出在Rt△BCD中,∠3=60°,DC=2,得出DB的長,進而得出EC的長.
(1)∵AD⊥DB,點E為AB的中點,
∴DE=BEAB,
∴∠1=∠2.
∵DE∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴BD平分∠ABC.
(2)∵AD⊥DB,∠A=30°,
∴∠1=60°,
∴∠3=∠2=60°.
∵∠BCD=90°,
∴∠4=30°,
∴∠CDE=∠2+∠4=90°.
在Rt△BCD中,∠3=60°,DC=2,
∴DB=4.
∵DE=BE,∠1=60°,
∴DE=DB=4,
∴EC2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=50°,圓O是△ABC的外接圓,AE為圓O的直徑,AE與BC相交于點D,若AB=AD.則∠EAC=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為4,A、B、C均是⊙O的點,點D是∠BAC的平分線與⊙O的交點,若∠BAC=120°,則弦BD的長為 _____________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關系如圖1所示.
小清同學根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)
B.駱駝從0時到時刻之間的最高體溫與當日最低體溫的差
C.駱駝在時刻的體溫與當日平均體溫的絕對差
D.駱駝從0時到時刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點到封閉圖形的“極化距離”定義如下:任取圖形上一點,記長度的最大值為,最小值為(若與重合,則),則“極化距離”.
(1)如圖1,正方形以原點為中心,點的坐標為,
①點到線段的“極化距離”_______;
點到線段的“極化距離”_________;
②記正方形為圖形,點在軸上,且,求點的坐標;
(2)如圖2,圖形為圓心在軸上,半徑為的圓,直線與軸,軸分別交于,兩點,若線段上的任一點都滿足,直接寫出圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動點(與點C,B不重合),連接AP,延長BC至點Q,使得∠PAC=∠QAC,過點Q作射線QH交線段AP于H,交AB于點M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示線段QC和BM之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線,直線.
(1)當時,求拋物線與軸交點的坐標;
(2)直線是否可能經(jīng)過拋物線的頂點,如果可能,請求出的值,如果不可能,請說明理由;
(3)記,當時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=12,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出DP滿足的條件: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,四邊形ABCD為正方形,BF⊥AE,那么BF與AE相等嗎?為什么?
(2)如圖2,在Rt△ABC中,BA=BC,∠ABC=90°,D為BC邊的中點,BE⊥AD于點E,交AC于F,求AF:FC的值;
(3)如圖3,Rt△ACB中,∠ABC=90°,D為BC邊的中點,BE⊥AD于點E,交AC于F,若AB=3,BC=4,求CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com