【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.9m,窗高CD=1.1m,并測得OE=0.9m,OF=3m,求圍墻AB的高度.
【答案】圍墻AB的高度是4.2m.
【解析】
首先根據(jù)DO=OE=0.9m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.
連接DC,可得C,D,O在一條直線上.
∵DO⊥BF,∴∠DOE=90°.
∵OD=0.9m,OE=0.9m,∴∠DEB=45°.
∵AB⊥BF,∴∠BAE=45°,∴AB=BE,
設(shè)AB=xm,則EB=xm.
∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,即,
解得:x=4.2.
經(jīng)檢驗:x=4.2是原方程的解.
答:圍墻AB的高度是4.2m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.一顆質(zhì)地均勻的骰子已連續(xù)拋投了2015次,其中拋擲出5點的次數(shù)最少,則第2016次一定拋擲出5點
B.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎
C.天氣預(yù)報說明天下雨的概率是,所以明天將有一半時間在下雨
D.在同一年出生的367名學(xué)生中,至少有兩人的生日是同一天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四個點,∠APC=∠CPB=60°.
(1)求證:PA+PB=PC;
(2)若BC=,點P是劣弧AB上一動點(異于A、B),PA、PB是關(guān)于x的一元二次方程x2﹣mx+n=0的兩根,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,對角線,相交于點,點,分別從,兩點同時出發(fā),以的速度沿,運動,到點,時停止運動,設(shè)運動時間為,的面積為,則與的函數(shù)關(guān)系可用圖象表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與軸交于兩點,與軸交于點,其頂點為,連接,過點作軸的垂線.
(1)求點的坐標;
(2)直線上是否存在點,使的面積等于的面積的3倍?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過點.
(1)求的值;
(2)過作軸,垂足為,點是雙曲線的一點,連接,,若的面積為12,求直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com