【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,AB長為半徑畫弧,交邊AD于點(diǎn);②再分別以B,F為圓心畫弧,兩弧交于平行四邊形ABCD內(nèi)部的點(diǎn)G處;③連接AG并延長交BC于點(diǎn)E,連接BF,若BF3,AB2.5,則AE的長為( 。

A.2B.4C.8D.5

【答案】B

【解析】

連接EF,先證AF=AB=BE,得四邊形ABEF是菱形,據(jù)此知AEBF互相垂直平分,繼而得OB的長,由勾股定理求得OA的長,繼而得出答案.

由題意得:AF=AB,AE為∠BAD的角平分線,則∠BAE=FAE

又∵四邊形ABCD是平行四邊形,則ADBC,∠BAE=FAE=BEA,∴AF=AB=BE

連接EF,則四邊形ABEF是菱形,∴AEBF互相垂直平分,設(shè)AEBF相交于點(diǎn)O,OB1.5.在RtAOB中,OA2,則AE=2OA=4

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊余料ABCD,ADBC,現(xiàn)進(jìn)行如下操作:以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧,分別交BABC于點(diǎn)G,H;再分別以點(diǎn)GH為圓心,大于GH的長為半徑畫弧,兩弧在ABC內(nèi)部相交于點(diǎn)O,畫射線BO,交AD于點(diǎn)E

1)求證:AB=AE;

2)若∠A=100°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長為2、寬為aa大于1且小于2)的長方形紙片按如圖①所示的方式折疊并壓平,剪下一個邊長等于長方形寬的正方形,稱為第一次操作:再把剩下的長方形按如圖②所示的方式折疊并壓平,剪下個邊長等于此時(shí)長方形寬的正方形,稱為第二次操作:如此反復(fù)操作下去,若在第n次操作后,剩下的長方形恰為正方形,則操作終止當(dāng)n=3時(shí),a的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭州市精準(zhǔn)扶貧工作已進(jìn)入攻堅(jiān)階段.貧困戶張伯伯在相關(guān)單位的幫扶下把一片坡地改造后種植了優(yōu)質(zhì)水果藍(lán)莓,今年正式上市銷售在銷售的30天中,第一天賣出20千克為了擴(kuò)大銷量采取了降價(jià)措施以后每天比前一天多賣出4千克第天的售價(jià)為/千克,關(guān)于的函數(shù)解析式為,且第12天的售價(jià)為32/千克,第26天的售價(jià)為25/千克.已知種植銷售藍(lán)莓的成本是18/千克,每天的利潤是元(利潤=銷售收入成本).

1_____________,____________

2)求銷售藍(lán)莓第幾天時(shí),當(dāng)天的利潤最大?最大利潤是多少?

3)在銷售藍(lán)莓的30天中,當(dāng)天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化城市環(huán)境,某街道重修了路面,準(zhǔn)備將老舊的路燈換成LED太陽能路燈,計(jì)劃購買海螺臂和A字臂兩種型號的太陽能路燈共100只,經(jīng)過市場調(diào)查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.

1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價(jià):

2)在實(shí)際購買時(shí),恰逢商家活動,購買海螺臂太陽能路燈超過20只時(shí),超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數(shù)量不少于A字臂太陽能路燈的數(shù)量的一半,請你設(shè)計(jì)一種購買方案,使得總費(fèi)用最少,并求出最小總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,連接點(diǎn)上一點(diǎn),使得連接于點(diǎn),作的延長線于點(diǎn)

1)求證:

2)若的長.

3)在(2)的條件下,將沿著對折得到點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),連接試求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市AB兩個蔬菜基地得知四川C,D兩個災(zāi)民安置點(diǎn)分別急需蔬菜240t260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200tB蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)CD兩個災(zāi)區(qū)安置點(diǎn).從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.

1)請?zhí)顚懴卤,并求兩個蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值;

C

D

總計(jì)/t

A

200

B

x

300

總計(jì)/t

240

260

500

2)設(shè)A,B兩個蔬菜基地的總運(yùn)費(fèi)為w元,求出wx之間的函數(shù)關(guān)系式,并求

總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;

3)經(jīng)過搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

同步練習(xí)冊答案