【題目】一束光線從點A(3,3)出發(fā),經過y軸上點C反射后經過點B(1,0),則光線從A點到B點經過的路線長是( 。
A. 4B. 5C. 6D. 7
【答案】B
【解析】
如果設A點關于y軸的對稱點為A′,那么C點就是A′B與y軸的交點.易知A′(-3,3),又B(1,0),可用待定系數法求出直線A′B的方程.再求出C點坐標,根據勾股定理分別求出AC、BC的長度.那么光線從A點到B點經過的路線長是AC+BC,從而得出結果.
解:如果將y軸當成平面鏡,設A點關于y軸的對稱點為A′,則由光路知識可知,A′相當于A的像點,光線從A到C到B,相當于光線從A′直接到B,所以C點就是A′B與y軸的交點.
∵A點關于y軸的對稱點為A′,A(3,3),
∴A′(-3,3),
進而由兩點式寫出A′B的直線方程為:y=(x-1).
令x=0,求得y=.所以C點坐標為(0,).
那么根據勾股定理,可得:
AC==,BC==.
因此,AC+BC=5.
故選:B.
科目:初中數學 來源: 題型:
【題目】吸煙有害健康.你知道嗎,被動吸煙也大大危害著人類的健康.為此,聯(lián)合國規(guī)定每年的5月31日為世界無煙日.為配合今年的“世界無煙日”宣傳活動,小明和同學們在學校所在地區(qū)展開了以“我支持的戒煙方式”為主題的問卷調查活動,征求市民的意見,并將調查結果分析整理后,制成下列統(tǒng)計圖:
(1)求小明和同學們一共隨機調查了多少人?
(2)根據以上信息,請你把統(tǒng)計圖補充完整;
(3)如果該地區(qū)有2萬人,那么請你根據以上調查結果,估計該地區(qū)大約有多少人支持“強制戒煙”這種戒煙方式?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB:y=-2x+8交y軸于點A,交x軸于點B,以AB為底作等腰三角形△ABC的頂點C恰好落在y軸上,連接BC,直線x=2交AB于點D,交BC于點E,交x軸于點G,連接CD.
(1)求證:∠OCB=2∠CBA;
(2)求點C的坐標和直線BC的解析式;
(3)求△DEB的面積;
(4)在x軸上存在一點P使PD-PC最長,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD=12,AB=9,E是BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在荔枝種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多20元,買1株A種樹苗和2株B種樹苗共需200元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴大種植,某農戶準備購買A、B兩種樹苗共36株,且A種樹苗數量不少于B種數量的一半,請求出費用最省的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射陽縣實驗初中為了解全校學生上學期參加社區(qū)活動的情況,學校隨機調查了本校50名學生參加社區(qū)活動的次數,并將調查所得的數據整理如下:
參加社區(qū)活動次數的頻數、頻率分布表
活動次數x | 頻數 | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請把頻數分布直方圖補充完整(畫圖后請標注相應的數據);
(3)若該校共有1200名學生,請估計該校在上學期參加社區(qū)活動超過6次的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】口袋中裝有四個大小完全相同的小球,把它們分別標號1,2,3,4,從中隨機摸出一個球,記下數字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數和等于4的概率.
【答案】 .
【解析】試題分析:
根據題意列表如下,由表可以得到所有的等可能結果,再求出所有結果中,兩次所摸到小球的數字之和為4的次數,即可計算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數字之和等于4的有(3,1)、(2,2)和(1,3),共計3種,
∴P(兩次摸到小球的數字之和等于4)=.
【題型】解答題
【結束】
23
【題目】小亮同學想利用影長測量學校旗桿AB的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數的圖象交于第一象限C,D兩點,坐標軸交于A、B兩點,連結OC,OD(O是坐標原點).
(1)利用圖中條件,求反比例函數的解析式和m的值;
(2)求△DOC的面積.
(3)雙曲線上是否存在一點P,使得△POC和△POD的面積相等?若存在,給出證明并求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com